
Evaluation of a Pentium PC for use as an Ethernet
Bridge

A.L. Cricenti
Centre for Advanced Internet Architectures. Technical Report 030326A

Swinburne University of Technology
Melbourne, Australia
tcricenti@swin.edu.au

Abstract-This technical report describesthe construction of
an inexpensiveEthernet Bridge built from an obsoletePentium
PC (IBM PC 300GL Pentium 166MMX) and Ethernet cards.
The report outlines a simple procedure for estimating the
latency of the bridge. Results are presented for the time-
stamping accuracy of the bridge, the average latency and
FreeBSD ping characteristics. The bridge can be used as a
traffic shaper by installing FreeBSD's dummynet module.

Keywords- Ethernet Bridge, Dummynet, Ping, Latency, CAIA

I. INTRODUCTION

This reportoutlinesthe experiencegainedduring the
construction and configuration of an inexpensive
PentiumPCbasedEthernetbridgeandoutlinesa simple
procedureto estimatethe latency of the bridge. This
bridge can be usedas a traffic monitor and or traffic
shaper.The bridge is flexible enoughso that it can be
usedin a variety of situationsfor example:to capture
packettracesfrom homeInternetusers,or to act as a
traffic shaperfor studyingthe effectsof packetlossand
delay.

II. DESCRIPTION OF THE ETHERNET BRIDGE

The Ethernet Bridge is built from a Pentium PC
running FreeBSD4.6 Release0. The purposeof this
bridge is twofold; the first is to collect packet traces
from homeInternetusers.The bridge is designedto be
connectedbetweeneitheranADSL or cablemodem,(or
otherEthernetdevice)andtheuser’sPCor small home
LAN. The secondpurposeof the bridge is to act as a
variablelatencydevice,which canbe usedto studythe
effect of latencyandpacketlosson the performanceof
networkgameplayers.In this case,thebridgeis placed
betweentwo gameconsoles(seeFigure1) andit is used
to selectivelydelayor drop packets.FreeBSDis a good
choicefor the operatingsystemof the bridge as it has
both bridging support[1] and ipfw/dummynet[2], the
latter being useful for controlled packet delay/loss.

A. Bridge Hardware

Having obtaineda used IBM PC 300GL Pentium
166MMX relatively cheaply, we decided to use this
machineasthebasisof anEthernetBridge.ThePChad
64MB RAM anda 1.7GBHDD. We installedFreeBSD
4.6. The overall the cost of the hardwarewas lessthan
$100. The final configuration of the bridge has 3
Ethernetnetworkinterfacecards,two of which, tx0 and

tx1, are fast Ethernet cards (SMC EtherPower II
10/100).Thesefast Ethernetadaptercardsare usedfor
bridging. The third adapter(cs1) is a 10BaseTadapter
(CS8920EthernetAdapter) that is built into the PC’s
motherboard;we choseto usethis interfaceto remotely
accessor configurethebridgevia IP. This cardwasnot
usedfor bridging as it doesnot support100Mbpsbit
rates.Installing FreeBSD4.6 requiresat least16MB of
RAM; however,it canberun with 4-8MB of RAM after
installation[3]. Theminimumharddrivesizerequiredis
100MB [4], but realistically the harddrive shouldbe at
least 250 to 350 MB. If the bridge is to be used to
captureandstorepackettracesthena largerharddisk is
desirable1.

Appendix 1 containsa more detaileddescriptionof
the bridge hardware.

B. FreeBSD Configuration

FreeBSDwaschosenastheoperatingsystemfor the
following reasons:

� It has all the necessary code for bridging support.
� It has a robust IP stack.

1 In our target application,compressedpacket traces
from a homeInternetuserare approximately3 to 5
MB perday,thereforea 1GB drive would besuitable
to store in excess of one month of packet traces.

CAIA Technical Report 030326A March 2003 page 1 of 10

Figure 1 Bridge Deployment

� It has tools for bandwidth management and
controlled packet delay/loss(dummynetand ipfw)
Dummynetsimulates/enforcesqueueand bandwidth
limitations, delays, packet losses, and multipath
effects.It alsoimplementsa variantof WeightedFair
Queuing called WF2Q+.

� It supportsstandardUNIX tools for collectingpacket
traces (tcpdump).

To enable kernel support for bridging and dummynet,
we chose to load bridge, ip firewall (ipfw) and
dummynetas kernel modulesby issuing the "kldload
bridge", "kldload ipfw" and "kldload dummynet"
commands.(Alternatively, the kernelcanbe recompiled
with the appropriateoptions.)Bridging, Dummynetand
ipfw alsorequirechangesto the rc.conf andsysctl.conf
files to enablebridging, ip firewall and to point to the
firewall rule script. Appendix 2 containsthe detailsof
the required changes.

III. BRIDGE LATENCY

A simplemethodto measurethe bridgelatencywas
developedusing ICMP Ping packetsandstandardPCs.
The procedure is outlined in the following section.

A. Equipment Set-up

Two PCs,configuredas below, were connectedto
eachother both directly (crossovercable) and through
the bridge (see Figure 2).

� The PC with IP address136.186.4.200(FreeBSD)
wasa CompaqEVO5000P4 1.7GHz256MB RAM
running Free BSD 4.6. This PC was used as the
source of the ping packets.

� ThePCwith IP address136.186.4.239(WinPC)was
a Compaq EVO5000 P4 1.7GHz 256MB RAM
running Windows 2000.

� Theclock speedof thebridge’sCPUcouldbevaried
from 100MHz to 200MHz by settingthe appropriate
dip switcheson the motherboard.This featurewas
usefulasit allowedthebridgelatencyto bemeasured
at different CPU speeds.

B. Time-stamping Accuracy

The bridge is to be used to collect packet traces,
thereforewe needto assessthe time-stampingaccuracy

of the bridge. The following procedure,was used to
measure the time-stamping accuracy of the bridge.

� Use Netcom System Smartbits 2000 to generate
ethernet frames with the following characteristics:

� Frame: 92 bytes Ether/IP/UDP + 4 byte CRC
� Fixed-space intervals: 125µs
� Link Speed: 100Mbps
� Frames were captured at the bridge using:

"tcpdump -n -i tx0 -w <file>"
� Trace files were read with:

"tcpdump -n -ttt -r <file>"

TheSmartbitsinter-frametime is measuredfrom the
endof the frameto the beginningof the next frame.On
the other hand, the difference between consecutive
tcpdumptimestampsis measuredfrom the beginningof
a frame to the beginning of the next frame. The two
times,therefore,differ by the frameduration.Sincethe
framesare 104 bytes (96 bytesplus 8 preamble)long,
thenthe durationof the frame is 104 × 8/100 ≈ 8.3µs.
Thus the time from the beginningof one frame to the
next is 125+8.3 = 133.3µs.

Theresultsobtainedfrom thebridgearesummarised
in Table 1.

CPU
Clock

MHz

Mean Median Std Dev No of
frames

Max Min

100 133.3 133 6.17 65535 339 37

200 133.3 133 3.38 65535 305 41

Table 1 Tcpdump Time-stamping Accuracy

We seethat increasingthe CPU clock speedreduces
the variability in the time-stamps. The cumulative
distribution,Figure3 showsthat95%of thetime-stamps
lie in the range131 to 135µs for the 200 MHz CPU
clock caseand 128 to 139µs for the 100 MHz CPU
clock case.Approximately98% of the time-stampsare
within ±10% of 133µs (200 MHz); whilst at the slower
CPUclock, 95%of thetime-stampswithin ±10%of 133

CAIA Technical Report 030326A March 2003 page 2 of 10

Figure 2 Latency Test Set-up

Figure 3 Ping RTT Cumulative Distribution

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

100 110 120 130 140 150
Tcpdump Time Stamp us

C
um

ul
at

iv
e

Fr
eq

ue
nc

y

200MHz Cumulative %

100MHz Cumulative %

µs. This error correspondsto ±27 bit times at 2 Mbps
(cable modem rates) so we can say that the time-
stamping accuracy of the bridge is adequate for
measuringpacket inter-arrival times for home Internet
traffic;.

C. Ping Charaterisation

As ping packetswereusedasthebasisfor estimating
the Bridge latency, we needed to characterisethe
behaviour of the FreeBSD implementation of Ping.

TheFreeBSD4.6 implementationof Pingdefaultsto
sending64 byte ICMP packetsthatarespaced1 second
apart.The “– i N” option can be usedto set the time
betweenping requeststo “N” seconds.This inter-packet
intervalcanbe lessthanonesecondif theping is issued
by the super-user (root).

To characterisethe FreeBSDping performancewe
ranthe following testto measurethe time betweenping
packets:

� Directly connect the FreeBSD PC to the WinPC.
� Usetcpdumpon theFreeBSDmachineto capturethe

ICMP packets. Eg: tcpdump -i fxp0 -w <file> 'icmp'
� Issue the ping –c 500 –i “specified wait time”

command
� Take the average of the 500 time intervals.
� The tests were run only once at each inter-packet

time.

We wantedto checktheimplicationsof changingthe
kernel timer-tick granularity on the ping inter-packet
times. The default kernel granularity FreeBSD4.6 is
10ms (100HZ); the granularity can be made finer by
recompiling the kernel with the "HZ option" set to a
higher value. Increasing the kernel "HZ option" to
1000Hz reduces the timer-tick time to 1ms.

The resultsobtainedfor the caseswhere the kernel
granularity was set to 100HZ and 1000Hz are
summarised in Figure 4.

We see from Figure 4 (100Hz) that the measured
ping wait timesare10mslonger thanwhat is specified
in the commandline (wait +10ms).The wait timesare
also rounded-upto the next integer multiple of 10ms.
TheroundingdoesnotaffecttheRTT time-stamping.So
for a specifiedwait time of 5ms, the actual wait time
becomes20ms.This is dueto the fact that thetimer-tick
granularity is too coarse(10ms or 100Hz). With the

kernelgranularitysetto 1000Hz,themeasuredping wait
times are 1ms longer than what is specified in the
commandline (wait +1ms). The wait times are also
rounded-upto the next integer multiple of 1ms. The
FreeBSDimplementationof ping addsone “timer-tick”
time to thewait time androundsup the wait time to the
next integer multiple of the “timer-tick”.

D. Flood Ping

Theflood ping (ping –f) outputsping packetsasfast
astheycanbegeneratedwith a minimumof 100packets
per second.To determinethe packetrate of the flood
ping, we usedthe following procedureto measurethe
inter-packet time.

� Directly connect the FreeBSD PC to the WinPC.
� Usetcpdumpon theFreeBSDmachineto capturethe

ICMP packets. Eg: tcpdump -i fxp0 -w <file> 'icmp'
� Issue the ping –c 56636 –f command from the

FreeBSD PC.
� The meanand mediantimes betweenping requests

are shown in Table 2. Using the median time
betweenping requests,the flood ping sendspackets
at a rateof 9.4 kpps(≈4Mbps)for 64 bytepingsand
2.8 kpps (≈30Mbps) for the larger 1480 byte pings.

Ping Packet Size Mean ms Median ms Std Dev Rate pps

64 Bytes 109.97 106.00 32.69 9434

1480 Bytes 361.31 358.00 20.82 2793

Table 2 Flood Ping Statistics

E. Bridge Latency Measurements

Thebridgelatencywasmeasuredasis outlinedin the
following:

Ping packets were sent from the FreeBSD PC
(136.186.4.200)to the Win PC (136.186.4.239)both
with thebridgein placeandwith thebridgeremovedsee
Figure 2.

Thesemeasurementsweretakenonly with thebridge
kernel module loaded(i.e. before dummynetand ipfw
wereinstalled).Thekernelgranularityof thebridge was
set to 1000Hz2.

The ping packets were either 64 or 1480 bytes
spaced at 20ms (ie ping –c 100000 –i 0.01
136.186.4.200),resulting in a packet rate of 50 pps
(approx50 kbpsand500 kbps).The 20msinterval was
chosensincethekernelgranularityof thepingsource(ie
the FreeBSD PC) was 10ms. The number of ping
packetsin eachtestwas100000.Theaverageroundtrip
time (RTT) was used to estimatethe bridge latency
using the following formula:

Bridge Latency = (Average RTT with bridge – Average RTT
without bridge)/2

The ping resultsfor the testswereplotted (Figure 5
showssomerepresentativeplots) to ensurethat nothing
“out of the ordinary” was happening.The graphsshow
thatmostof theping packetsaredelayedby roughly the

2 The default kernel granularity of 100Hz gives similar
results.

CAIA Technical Report 030326A March 2003 page 3 of 10

Figure 4 Ping "Wait" Time

0

0.01

0.02

0.03

0.04

0.05

0 5 10 15 20 25 30 35 40 45

Specified Ping Wait Time ms

M
ea

su
re

d
Pi

ng
 W

ai
t T

im
e

100 HZ

1000HZ

same amount with the exception of one or two outliers.
This behaviour is deemed acceptable as it occurs both
with the bridge and without it. No ping packets were lost
during these tests.

The round-trip times in ms and average bridge
latency in µs are shown in Table 3.

From Table 3, the average latency is 24.5µs at
200MHz and rises to 32µs with a 100MHz CPU clock.
The cumulative distribution graph (Figure 6) of the
RTTs shows that 90% of the RTTs are below 140 µs for
the 200MHz CPU clock, rising to 155µs for 100MHz

case, compared with 85µs for the case without the
bridge. As can be seen the latency introduced by the
bridge is small enough not to be considered a major
problem. No packet loss was reported in these tests.

A test was also conducted with tcpdump capturing 30
000 packets crossing the bridge. The traces were written
to a file. In this case the average latency increased from
24.5 to 28.5µs with a 200MHz CPU clock and from 32
to 38µs for the 100MHz case. We can conclude that
running tcpdump on the bridge to capture packet traces
does not increase the bridge latency significantly. Again,
no packet loss was reported.

The tests were repeated for a 1480 byte ping packets;
the results are given in Table 4. The average latency in
this case was 144.5µs with a 200MHz CPU clock and
153.5µs for the 100MHz case. This increase is expected
as the bridge must process a longer packet.

Comments CPU Clock

MHz

Min
ms

Average
ms

Max
ms

Std Dev Bridge
Latency

µs

No Bridge NA 0.322 0.334 2.146 0.013 0

Bridge 100 0.625 0.641 3.091 0.017 153.5

Bridge 200 0.608 0.623 3.169 0.016 144.5

Table 4 Ping RTT and Bridge Latency 1480 Byte Pings

Figure 7 Shows the cumulative distribution of RTTs.
In this case 90% of the RTTs are below 630 µs for the
200MHz CPU clock, rising to 655 µs for 100MHz case,
compared with 340 µs without the bridge.

Running tcpdump on the bridge increases the average
latency to 146µs (200MHz) and 158.5µs (100MHz).
Again the increase due to tcpdump is small.

CAIA Technical Report 030326A March 2003 page 4 of 10

Figure 6 Ping RTT Cumulative Distribution

Figure 5 Ping RTT Plots

Comments CPU
Clock

MHz

Min
ms

Average
ms

Max
ms

Std Dev Bridge
Latency

µs

No Bridge NA 0.077 0.082 2.660 0.015 0

Bridge Test 1 100 0.137 0.146 2.577 0.013 32

Bridge Test 2 100 0.136 0.145 2.227 0.012 31.5

Bridge Test 3 100 0.136 0.144 1.957 0.013 31

Bridge Test 1 200 0.124 0.131 2.674 0.013 24.5

Bridge Test 2 200 0.124 0.131 2.092 0.014 24.5

Bridge Test 3 200 0.124 0.131 1.390 0.010 24.5

Table 3 Ping RTT and Bridge Latency

64 byte Ping RTT Cumulative Distribution

0

10

20

30

40

50

60

70

80

90

100

50 75 100 125 150 175 200 225 250

Ping RTT us

C
um

ul
at

iv
e

R
el

at
iv

e
Fr

eq
ue

nc
y

%

No Bridge

200MHz CPU

200MHz CPU TCPDUMP

100MHz CPU

100MHz CPU 64 byte
TCPDUMP

The above tests were conducted at a packet rate of
50pps (ie 20 ms spaced packets). To increase the ping
packet rate to 500pps we changed the kernel granularity
on the FreeBSD machine to 1 ms and repeated the tests.
(Figure 8). The granularity of the bridge was not
changed from 100Hz. See Table 5 and Table 6 for a
summary of the results. One ping packet was lost in the
case of the 1480 byte ping test with 100MHz CPU
clock.

Comments CPU Clock

MHz

Min
ms

Average
ms

Max
ms

Std Dev Bridge
Latency

µs

No Bridge NA 0.073 0.079 2.341 0.010 0

Bridge 100 0.132 0.139 2.524 0.010 30

Bridge 200 0.122 0.126 2.336 0.01 23.5

Table 5 Ping RTT and Bridge Latency 64 Byte Packet

Comments CPU Clock

MHz

Min
ms

Average
ms

Max
ms

Std Dev Bridge
Latency

µs

No Bridge NA 0.32 0.33 2.01 0.01 0

Bridge 100 0.62 0.63 2.74 0.01 153

Bridge 200 0.61 0.62 2.35 0.01 144.5

Table 6 Ping RTT and Bridge Latency 1480 Byte Packet

The average latency for the higher packet rates is
similar to that measured in the 50pps case. We can
conclude that the bridge is suitable for capturing packets
at this rate.

Running tcpdump on the bridge increases average the
latency from 30µs to 36µs (100MHz) for a 64 byte ping.
In the case of the 1480 byte ping the average latency
increases from 139µs to 158.5µs (100MHz). Again the
increase due to tcpdump is small and is similar to the
50pps case. The test was not conducted at 200MHz as
the results for the 100MHz clock speed are similar to the
50pps case.

F. Hardware Issues

The original configuration of the bridge used the
built in adapter cs1, a 10BaseT adapter (CS8920
Ethernet Adapter), card and a 10/100BaseTX D-Link
DFE-530TX (VT6102 Rhine II) adapter. The bridge did
not work using this configuration. The problem was
fixed by installing a second D-Link network interface
card and using the two D-Link cards as the bridge ports.

With this configuration we observed some unusual
behaviour in the RTTs (outlined further in Appendix 3).
We solved the problem by replacing the D-Link
Ethernet adapters with SMC types.

IV. DUMMYNET

To use the bridge as a traffic shaper dummynet needs
to be installed. This can be achieved by either including
the ip firewall (ipfw) and dummynet options and
rebuilding the kernel, or by loading the appropriate
modules dynamically using “kldload”.

Dummynet uses the ipfw code to select packets that
are to be subjected to packet delay, random loss or
bandwidth limitation. The selected packets are extracted
from a bounded size queue at a programmed rate and
passed to a second queue where the delay, if any, is
added. Packets leaving the second queue are re-injected
into the protocol stack at the same point they came from.
Details of dummynet rules and commands are given in
[2] and the dummynet man page.

CAIA Technical Report 030326A March 2003 page 5 of 10

Figure 7 Ping RTT Cumulative Distribution

 1480 byte Ping RTT Cumulative Distribution

0

10

20

30

40

50

60

70

80

90

100

100 200 300 400 500 600 700 800

Ping RTT us

C
um

ul
at

iv
e

R
el

at
iv

e
Fr

eq
ue

nc
y

No Bridge

200MHz CPU

100MHz CPU

200MHz CPU TCPDUMP
100MHz CPU TCPDUMP

Figure 8 500pps Ping RTT Cumulative Distribution

 1480 byte Ping RTT Cumulative Distribution

0

10

20

30

40

50

60

70

80

90

100

100 200 300 400 500 600 700 800

Ping RTT us

C
u

m
u

la
ti

v
e
 R

e
la

ti
v
e
 F

re
q

u
e
n

c
y

No Bridge

200MHz CPU

100MHz CPU

100MHz CPU TCPDUMP

64 byte Ping RTT Cumulative Distribution

0

10

20

30

40

50

60

70

80

90

100

50 75 100 125 150 175 200 225 250

Ping RTT us

C
u

m
u

la
ti

v
e

 R
e

la
ti

v
e

 F
re

q
u

e
n

c
y

 %

No Bridge

100MHz CPU

200MHz CPU

100MHz CPU TCPDUMP

Again, the ping method was used to measure the
latency that the ipfw and dummynet introduce across the
bridge. Dummynet performs its task once per timer-tick;
therefore, the kernel granularity (HZ option) was
changed from 100Hz to 1000Hz so that packets could be
delayed in increments down to 1 ms.

A. Dummynet Results

The round-trip times in ms and bridge latency with
the dummynet delay set to 0ms (ipfw pipe 1 config
delay 0ms) were as follows (Table 7):

Comments CPU
Clock

MHz

Min
ms

Average
ms

Max
ms

Std

Dev

Bridge
Latency

µs

No Bridge NA 0.077 0.082 2.660 0.015 0

Dummynet 100 0.171 0.19 2.227 0.017 51.5

Dummynet 200 0.150 0.159 1.283 0.015 38.5

Table 7 Ping RTT and Bridge Latency with ipfw and
Dummynet Installed

Installation of the firewall for dummynet support
increases the average latency from 24.5µs to 38.5µs
(200 MHz CPU clock) and from 32µs to 51.5µs (100
MHz CPU clock). The maximum RTT reported by the
ping test was 1.283 ms, this value only occurred once.
Figure 9 is a plot of the cumulative distribution of the
RTTs with dummynet installed. We can see that 90% of
the ping RTTs are below approximately 170 µs (200
MHz CPU clock) and 200 µs (100 MHz CPU clock) and
99% of the RTTs are less than 205 µs (200 MHz CPU
clock) and 240 µs (100 MHz CPU clock).

A simple test was conducted where the latency of the

bridge was varied from 1000ms to 1ms, and ping
packets where sent from the FreeBSD PC to the WinPC.
The delay was varied by the command: ipfw pipe 1
config delay “delay”ms. In this test case “delay” was
changed from 1000 to 1 ms. The results are summarised
in Table 8.

Dummynet
Delay ms

Minimum
RTT ms

Average
RTT ms

Maximum
RTT ms

Standard
Deviation

Average
Oneway
Delay

1.00 0.93 1.57 3.86 0.29 0.78

2.00 3.02 3.56 4.26 0.29 1.78

5.00 9.06 9.56 10.24 0.28 4.78

10.00 18.84 19.75 20.34 0.29 9.88

100.00 198.88 199.59 200.51 0.30 99.80

1000.00 1998.77 1999.37 1999.88 0.29 999.69

Table 8 Dummynet Delay Statistics

The ip firewall uses the sysctl variable
“net.inet.ip.fw.one_pass”, to determine if the packets
coming from a pipe can be either directly forwarded to
their destination, or passed again through the ipfw rules.
In this test case the “net.inet.ip.fw.one_pass” variable
was set to 1, thus each packet was only processed (hence
delayed) once in each direction. As can be seen the RTT
is approximately double the delay introduced by the

bridge.

Figure 10 is a typical RTT plot, we can see that the
delay through the bridge is not constant, but changes
periodically. The difference between the maximum
delay and the minimum delay is 1 ms (kernel
granularity3). This behaviour is consistent with
dummynet performing its task once per time tick (1ms).
Packets that arrive between timer ticks will miss one
tick's worth of delay.

Figure 11 shows the cumulative frequency
distributions for delays up to 5 ms. It is interesting to
note that most of the actual delays are less than the
specified delay.

3 The range becomes 10ms for a kernel granularity
of 10ms.

CAIA Technical Report 030326A March 2003 page 6 of 10

Figure 10 RTT with 10ms Delay

Dummynet 10ms Delay 200MHz Clock Ping RTT

18.6

18.8

19

19.2

19.4

19.6

19.8

20

20.2

20.4

20.6

0 10 20 30 40 50 60 70 80 90 100

Time since beginning of run (s)

R
TT

 m
s

Figure 9 RTT Cumulative Distribution with Dummynet
Installed

Dummynet Ping RTT Cumulative Distribution

0

10

20

30

40

50

60

70

80

90

100

50 75 100 125 150 175 200 225 250 275 300

Ping RTT us

C
u

m
u

la
ti

ve
 R

el
at

iv
e

F
re

q
u

en
cy

 %

No Bridge
200MHz CPU
200MHz delay=0
100MHz CPU
100MHz delay=0

V. CONCLUSION
An inexpensive Ethernet Bridge can be built from

obsolete Pentium PCs and Ethernet cards. The time-
stamping accuracy of our specific bridge based on an
IBM PC 300GL is satisfactory for packet tracing where
extremely short packet interarrival times are not
expected.

The interval between ping packets is related to the
kernel granularity; with the default granularity of
FreeBSD 4.6 the interval is a multiple of 10ms. Smaller
intervals between ping packets can be obtained by
increasing the kernel HZ option.

The RTT of 64 byte ping packets was used to obtain
an estimate of the average latency across the bridge.
Using this method, we found that the average bridge
latency was 32 µs for a 100MHZ CPU clock and 24.5 µs
for a 200MHZ CPU clock. For large packets (1480
bytes) the latency increases to 144.5µs with a 200MHz
CPU clock and 153.5µs for the 100MHz case. Running
tcpdump on the bridge increases the bridge latency by
only 4µs for a 64 byte packet with a 200MHz CPU clock
and 6µs for a 100MHz CPU clock.

The bridge is also useful as a traffic shaper by
installing dummynet and ipfw. The overhead introduced
by installing ipfw and dummynet increased the average
latency from 24 to 37 µs for a 64 byte packet.

This technical report outlined a simple procedure for
estimating the bridge latency using ping packets and
PCs. A more accurate estimate of the latency can be
obtained by using appropriate test equipment and the
methodology outlined in RFC1944. The results obtained
with this simple method should be compared with those
that would be obtained from RFC1944. Further work
also needs to be done to characterise the packet loss
performance of the bridge. The results obtained with the
Pentium based bridge should also be compared to a
bridge based on a more powerful processor to determine
if this significantly decreases the latency. These issues
will be addressed in a subsequent report.

Although a Pentium processor based PC was used in
this case it would be interesting to try a 486 processor
machine as the basis of the bridge.

If only dummynet is required then it may be possible
to run the bridge without a hard disk by using a single
floppy disk operating system such as picoBSD [5].

ACKNOWLEDGMENTS

I am grateful for the assistance that Grenville
Armitage gave me in preparing this report.

REFERENCES

[1] S. Peterson “ FreeBSD Handbook Chapter 19 Advanced Networking”
http://www.freebsd.org/doc/en_US.ISO8859-
1/books/handbook/bridging.html"

[2] L. Rizzo “Dummynet” http://info.iet.unipi.it/~luigi/ip_dummynet/

[3] The Free BSD Project “FreeBSD/i386 4.6.2-RELEASE Installation
Instructions”

[4] The Free BSD Project “FreeBSD Handbook Sec 2.2.3.1 Disk Layouts for
the i386"

[5] “PicoBSD” http://people.freebsd.org/~picobsd/picobsd.html

CAIA Technical Report 030326A March 2003 page 7 of 10

Figure 11 RTT Cumulative Distribution

Dummynet 64 byte Ping RTT Cumulative Distribution

0

10

20

30

40

50

60

70

80

90

100

0 1 2 3 4 5 6 7 8 9 10 11 12

Ping RTT ms

C
um

ul
at

iv
e

R
el

at
iv

e
Fr

eq
ue

nc
y

%

Delay = 0
Delay = 1ms
Delay = 2ms
Delay = 5ms

Appendix 1

Bridge Hardware Description

A. PC:

IBM PC 300GL Pentium 166MMX type 6282-36A S/N
90-A3HD5

64MB RAM

256kB Cache

1704MB IDE HDD

Inbuilt VGA, USB, 10Mbps Ethernet, 3.5” floppy

The CPU multiplier and the bus speed can be changed by
setting a dip-switch on the motherboard. The range of
available CPU clock frequencies is 75MHz to 233MHz the
processor speed is reported in the System Summary of the
Bios.

B. Ethernet network interface cards:

Two PCI Fast Ethernet NICs were added details as
follows:

tx0: SMC EtherPower II 10/100
Mac address: 00:e0:29:2e:bd:b6,
type SMC9432TX

tx1: SMC EtherPower II 10/100
Mac address: 00:e0:29:2e:c7:d0,
type SMC9432TX

C. Operating System:

FreeBSD 4.6 Release 0.

D. Dmesg Output

dmesg reports the following for a CPU speed of 166 MHz:
Copyright (c) 1992-2002 The FreeBSD Project.
Copyright (c) 1979, 1980, 1983, 1986, 1988, 1989,
1991, 1992, 1993, 1994
The Regents of the University of California. All
rights reserved.

FreeBSD 4.6-RELEASE #0: Thu Sep 5 11:47:41 EST 2002

root@Sniffer1.caia.swin.edu.au:/usr/src/sys/compile/

MYKERNEL

Timecounter "i8254" frequency 1193182 Hz

CPU: Pentium/P55C (166.19-MHz 586-class CPU)

Origin = "GenuineIntel" Id = 0x543 Stepping = 3

Features=0x8001bf<FPU,VME,DE,PSE,TSC,MSR,MCE,CX8,MMX>

real memory = 67108864 (65536K bytes)

avail memory = 60403712 (58988K bytes)

Intel Pentium detected, installing workaround for

F00F bug

md0: Malloc disk

npx0: <math processor> on motherboard

npx0: INT 16 interface

pcib0: <Host to PCI bridge> on motherboard

pci0: <PCI bus> on pcib0

isab0: <Intel 82371SB PCI to ISA bridge> at device

1.0 on pci0

isa0: <ISA bus> on isab0

atapci0: <Intel PIIX3 ATA controller> port 0xfff0-

0xffff at device 1.1 on pci0

ata0: at 0x1f0 irq 14 on atapci0

ata1: at 0x170 irq 15 on atapci0

uhci0: <Intel 82371SB (PIIX3) USB controller> port

0x5800-0x581f irq 11 at device 1.2 on pci0

usb0: <Intel 82371SB (PIIX3) USB controller> on

uhci0

usb0: USB revision 1.0

uhub0: Intel UHCI root hub, class 9/0, rev

1.00/1.00, addr 1

uhub0: 2 ports with 2 removable, self powered

pci0: <Cirrus Logic GD5446 SVGA controller> at 8.0

tx0: <SMC EtherPower II 10/100> port 0x5400-0x54ff

mem 0x60001000-0x60001fff irq 10 at device 10.0 on

pci0

miibus0: <MII bus> on tx0

qsphy0: <QS6612 10/100 media interface> on miibus0

qsphy0: 10baseT, 10baseT-FDX, 100baseTX, 100baseTX-

FDX, auto

tx0: address 00:e0:29:2e:bd:b6, type SMC9432TX

tx1: <SMC EtherPower II 10/100> port 0x5000-0x50ff

mem 0x60000000-0x60000fff irq 11 at device 11.0 on

pci0

miibus1: <MII bus> on tx1

qsphy1: <QS6612 10/100 media interface> on miibus1

qsphy1:10baseT, 10baseT-FDX, 100baseTX, 100baseTX-

FDX, auto

tx1: address 00:e0:29:2e:c7:d0, type SMC9432TX

orm0: <Option ROM> at iomem 0xc0000-0xc7fff on isa0

fdc0: <NEC 72065B or clone> at port 0x3f0-

0x3f5,0x3f7 irq 6 drq 2 on isa0

fdc0: FIFO enabled, 8 bytes threshold

fd0: <1440-KB 3.5" drive> on fdc0 drive 0

atkbdc0: <Keyboard controller (i8042)> at port

0x60,0x64 on isa0

atkbd0: <AT Keyboard> flags 0x1 irq 1 on atkbdc0

kbd0 at atkbd0

vga0: <Generic ISA VGA> at port 0x3c0-0x3df iomem

0xa0000-0xbffff on isa0

sc0: <System console> at flags 0x100 on isa0

sc0: VGA <16 virtual consoles, flags=0x300>

sio0 at port 0x3f8-0x3ff irq 4 flags 0x10 on isa0

sio0: type 16550A

sio1 at port 0x2f8-0x2ff irq 3 on isa0

sio1: type 16550A

ppc0: cannot reserve I/O port range

cs1: <CS8920 Ethernet Adapter> at port 0x250-0x26f

irq 5 on isa0

BRIDGE 020214 loaded

ad0: 1625MB <ST31722A> [3303/16/63] at ata0-master

WDMA2

Mounting root from ufs:ad0s1a

CAIA Technical Report 030326A March 2003 page 8 of 10

Appendix 2

A. Bridge Software Configuration
Outlined below are the configuration changes required
to set up the bridge, ipfw and dummynet. A shell script
“bridge.sh” that automatically installs bridging, ipfw and
dummynet is available from the author.

To automatically load the bridge kernel module at boot-
up; edit the /boot/loader.conf file to include the
following:

bridge_load=\"YES\" # load bridge
module

� For dummynet must add the ipfw module
ipfw_load=\"YES\" # load ipfw module

Loading the dummynet module using the above
mechanism doesn't work. However, we can run a shell
script at boot-up which will load the dummynet kernel
module.

a) Create a shell script in /usr/local/etc/rc.d/ with the
following line:
kldload dummynet

b) Make sure that the shell script is executable.

Alternatively rebuild the kernel with the options
specified in the FreeBSD Handbook section on bridging
(http://www.freebsd.org/doc/en_US.ISO8859-
1/books/handbook/bridging.html) and the dummynet
man page. To recompile kernel refer to
http://www.freebsd.org/doc/en_US.ISO8859-
1/books/handbook/kernelconfig-building.html

� Dummynet performs its task once per timer tick;
since the default granularity is 100 Hz, this limits
delays to be larger than 10 ms. For shorter than 10
ms delays, one needs to increase the granularity.
options HZ=1000 #sets the timer

granularity to 1000Hz

� Add the following lines to /etc/sysctl.conf:

For bridging:
net.link.ether.bridge=1

net.link.ether.bridge_cfg=if1:x,if2:x

where if1:x refers to the interface and cluster on which
bridging is enabled, in our case.

net.link.ether.bridge_cfg=tx0:1,tx1:1

To enable ip firewall:
net.link.ether.bridge _ipfw=1

#force bridged packets to pass through the
firewall code.

For dummynet as recommended in dummynet [2]:
net.inet.ip.fw.enable =1

#enables firewall in the IP stack

net.inet.ip.fw.one _pass=1

#Forces a single pass through the firewall.
If set to 0, packets coming out of a pipe
will be reinjected into the firewall
starting with the rule after the matching
one. NOTE there is always one pass for
bridged packets.

� I’ve added these lines to /etc/rc.conf
gateway_enable="YES" # probably already

there

firewall_enable="YES"

firewall_script="/etc/rc.ipfw.dummynet"

#Name of script with firewall commands

The following lines are used to control the delay

(this was put in /etc/rc.ipfw.dummynet, but it can be
issued from the command line).

ipfw add pipe 1 ip from any to any bridged

ipfw pipe 1 config delay “delay in ms”

CAIA Technical Report 030326A March 2003 page 9 of 10

Appendix 3

A. Ethernet Network Interface Card Issues
The original configuration of the bridge used the

built in adapter cs1, a 10BaseT adapter (CS8920
Ethernet Adapter), card and a 10/100BaseTX D-Link
DFE-530TX (VT6102 Rhine II) adapter. The bridge did
not work using this configuration. The problem was
fixed by installing a second D-Link network interface
card and using the two D-Link cards as the bridge ports.
I haven’t been able to establish why the bridge did not
work with the two different cards.

With the two D-Link cards used for bridging (vr0
and vr1) and using ping to measure the latency
uncovered some unusual behaviour. Although the
average RTT time was low both the variance and
maximum RTT were high(Table A1). The high standard
deviation suggested that there were many packets that
were delayed considerably more than the average.

The round-trip times in ms were as follows:

CPU
Clock

(MHz)

Number of
pings

Min Average Max Standard
Deviation

No
Bridge

NA
30000 0.083 0.109 2.147 0.024

Bridge 100 15000 0.176 0.227 2.150 0.065

Bridge 200 40000 0.165 0.231 3.823 0.132

Table 9 Ping RTT

Note: The same experimental setup as outlined in the
main body of the report was used.

Scatter plots were used to visually check the delays,
from these plots some “interesting” behaviour was
observed.

Figure 12 is a plot of ping time vs ping packet number
across the bridge. We see that there is a gradual ramping
up of the RTT for ping packets numbered between about

5000 and 7000, this feature repeats itself starting from
packet 14500 approximately. The behaviour is periodic

with a period of approximately 90-95 seconds.

Closer inspection of the ramp reveals that every 50th
packet is delayed, see Figure 13. Although this
behaviour may not be an issue for a PC connected to a
LAN, it is undesirable when using the PC to capture
packet traces.

The clock speed of the processor was raised to
200MHz and the experiment repeated, again the
behaviour is similar as it is for the 100 MHz case. Refer
to Figure 14 below, (note Excel can only display 32000
points):

Tcpdump packet traces confirmed that the large
delays were introduced by the bridge. Due to the
periodic nature of the delays, it was initially assumed
that some process running in BSD or some interrupt on
the motherboard was causing the increase in latency.
Shutting down processes did not affect the behaviour,
this pointed to either one of the key FreeBSD daemons
that could not be shutdown (eg inetd), or a hardware
related issue.

The Ethernet cards were changed to SMC
EtherPower II 10/100 and the ramping of delay
disappeared. The behaviour reappears if one D-Link and
one SMC are installed, suggesting that the D-Link card
is the culprit. In summary, when choosing Ethernet
cards for building devices used to measure interarrival
times, one must be careful to ensure that the particular
network interface cards chosen do not have any unusual
effects on the packet delays introduced by the bridge.

CAIA Technical Report 030326A March 2003 page 10 of 10

Figure 14 Ping RTT with the bridge between PCs, Bridge
CPU clock 200MHz

Figure 13 Ping RTT for packets 5000 to 7000

Figure 12 Ping RTT with the bridge between PCs, Bridge
CPU clock 100MHz

