Real time interception and filtering of instant messaging protocols

Warren Harrop

Centre for Advanced Internet Architectures. Technical Report 030919A
Swinburne University of Technology
Melbourne, Australia
104304@swin.edu.au

Abstract- Internet engineersmust actively develop tools and
technologiesto support safe,secureand trustworthy methodsfor
Lawful Interception. This paper describesthe development of
MsgSifter, a multi-protocol, instant messagenterception utility
basedon the existing open source software package'msgsnarf'.
Logging and certain protocol filtering changeswere madeto the
msgsnarf code. In addition, a Java based GUI was created to
placean easyto usecontrol and filtering layer over the command
line msgsnarf program.

Keywords- | nstant Messaging, Network Sniffing, Security,
Lawful Interception, MsgSifter, Dsniff

|.  INTRODUCTION

Dr. Philip Branch'spaper,'Lawful Interceptionof the
Internet[1] discusseshe presendayissuessurrounding
Lawful Interceptionof Internetdata. The paperargues
that without input on behalf of researchand Internet
standardsbodies, Lawful Interception methodscould
prove to be a threatto both securityand privacy. It is
further arguedthat Internetengineersare to be actively
involvedin the creationof Lawful Interceptiontoolsand
utilities to prevent Lawful Interception becoming a
liability for everyone.

With the aforementioneddeasin mind a program
'MsgSifter'wascreatedjnitially striving to be a proof of
conceptutility. The selectiveinterceptionandreal time
processin@f datais performedon messagesentby the
most popular instant messagingprotocols. MsgSifter
provides the ability to watch, filter and log multiple
instantmessageonversationsn real time. In a Lawful
Interceptionsituation, more advancedprogramscould
preform this collection and filtering on multiple
protocols, but as a starting point, a set of instant
messaging protocols were chosen becauseof their
currentwide usage.MSN, AIM, Yahoo and ICQ are
supported.

The Centre for Advanced Internet Architectures
(CAIA) uses FreeBSD as its standard Unix-like
operatingsystem,thus, freeBSD 4.8 was the platform
used for the software development of MsgSifter.

Il. ReLatep Work

A numberof options presentedthemselvedor the
developmentpath of MsgSifter during researchinto
related work. Coding the entire solution from scratch
was not donedueto the limited time andlarge amount
of codingwaork involved. Four piecesof softwarewere
considered to be possible starting points.

Pkthisto [2] is a packettraffic analysistool for the
study of on line gametraffic, andis being usedwithin
CAIA's Game ENvironmentInternet Utilisation Study
(GENIUS) project. It has a real time packet sniffing
ability that could have beenmaodified to recreateTCP
sessionsand the MsgSifter code could have beenbuilt
from this point. Two other programs msn666[3] and
aimsniff[4], alreadydo partof thedesiredtask, sniffing
their respectiveprotocols,msnandaim. Eachof these3
programs are quite good in their own right, but
combining or extending upon their respectivesource
codeto producethe desiredresultsof this projectwould
not have been a trivial matter in the time given.

Finally, the code that was expanded upon is
'msgsnarf' part of the dsniff [5] packageof programs.
Starting with the msgsnarfprogram provided code to
passively watch network activity, reconstruct TCP
sessionsanddecodethe mostpopularinstantmessaging
protocols Msgsnarfhoweverhasno GUI, no methodfor
logging and no method for discerning between
conversatiorflows - thesefeatureswere addedby this
project.

I1l. INTERCEPTIONARCHITECTURE

The MsgSifter package builds on the existing
msgsnarfcodein two ways. The first is to add simple
logging code to the existing msgsnarfsource code,
making it 'msgsnarf+'.The secondis the creationof a

Java based GUI application able to keep track of specific

instant messagingconversationsand display thesein
individual windows.

A.  Features Of Implementation

MsgSifter has the ability to connect directly to
msgsharf+or an unmodifiedversionof msgsnarf)and
displayconversationsn realtime. It alsohasthe ability
to scanmsgsnarfHogs, (or the storedstandardutputof
a msgsnarfsessionjandrun fasterthanreal time giving
'play back’ of conversationsWhile running, the main

File Edit

3115
1773 e

sniffingatcaia@hotmail . com

sniffingatcaia
eluation k

Figurel Example MsgSifter main window showing detected users

1 The author is currently a final year Engineering student at Swinburne University

CAIA Technical Report 030919A September 2003

pagel of 3



window of MsgSifter is propagated with instant
messenger user names as they are detected. As user to
user conversations begin, a new message window is
spawned for each conversation. This window will then
continue to mirror the conversation as each user sends
new messages. The ability to save a conversation
window to alog at anytime from within the GUI is also
provided.

| nterception computer

GUI display < MsgSifter (Java)

—
—

<+— Mggsnarf (C)

Log files

Ethernet segment

Figure 2 MsgSifter software components and their intercation
B. Limitations Of Implementation

There are a number of factors that limit the practical
ability of the MsgSifter program to intercept instant
messaging conversations. For example, msgsnarf must
be active when the TCP session between instant
messaging server and client is created. If this is not the
case msgsnarf is unable to detect any message data.

Furthermore there are certain problems with the
msgsnarf ICQ/AIM parsing code that causes the start of
messages to be clipped by a number of characters. This
error is adluded to in the msgsnarf source code and will
be resolved during future development of msgsnarf.

C. Software development

The msgsnarf program was changed by adding an
additional feature. 'Msgsnarf+' appends al detected
messages to alog to afile, 'msgsnarf.log’. MsgSifter can
then be used to parse this log file at a later date to view
individual conversations.

MsgSifter can be run in two different ways, these
options are both available under the 'File’ menu of the
GUI. The first option 'Sniff now..." launches msgsnarf or
msgsnarf+ in a new thread and reads message lines from
its output. Each time alineis read from msgsnarf, a Java
event isfired. When these occur the program adds newly
found usersto thelist in the main window and places the
received messages in the appropriate conversation
window. To control what user's conversations are
ignored, MsgSifter users can select or deselect user
screen names in the main window. If their name is
unselected when they initiate new conversations with
other users, their conversations are ignored.

The alternative method for running MsgSifter is to
use the log parsing feature, 'Parse Existing Logs...". This
reads in a msgsnarf+ 'msgsnarf.log' file or the saved
standard output of a msgsnarf session. In operation it
worksjust as if live sniffing were taking place. The only
difference is that the log file is parsed for users first,

CAIA Technical Report 030919A September 2003

then pauses. This allows the MsgSifter user to make
decisions on what instant messaging users are to be
ignored. After selection of another menu item the
program then runs faster than real time creating and
propagating conversation windows.

|Mon Aug 08 00:11:36 EST 1970 1545 4xxXx: )
|Mon Aug 06 00:12:00 EST 1970 1545 4xxxx: those weird packets have really gc.
.t me stumped. | dont know what they are. They're just constant as well. | dont |
- |know what would be doing that kind of traffic. Like in that thing i linked toitn.
-light be because of the switches .
“Mon Aug 06 00:12:10 EST 1970 3115 xxxxx: maybe some stuff up else-where? |-
Cjand the switch cant work out where to send it, so it broadcasts it... the qn is is|
|who is "0:3:0:4f:30: 77"

-[Meon Aug 06 00:12:23 EST 1970 1545 4xxxx: Yeh, weird. k
“Mon Aug 08 00:12:52 EST 1970 3115 xxxxx: hang about

Mon Aug 06 00:13:31 EST 1970 15454xxxx: like run tepdump -n not port 22
-[There's heaps of them..|

‘|Mon Aug O 00:18:14 EST 1970 3115 xxxxx: the mac address range "00-03-00|
C["is registered to "00-03-00 (hex) Netcontinuum, Inc. 000300  (base 16} MNe
_tcontinuum, Inc. 1705 Wyatt Drive Santa Clara, CA 95054" g

. Mon Aug 06 00:18:19 EST 1970 3115xxxxx: hmmmmm..... might mean nothing

“|Mon Aug 06 00:22:12 EST 1970 15454xxxx: Hmm, hadnt even thought of that

Figure 3 A sample conversation beween two users, icq numbers obscured
IV .LIMITATIONS OF REAL TIME INTERCEPTION

In a broader sense, but dtill valid to MsgSifter
execution are the general limitations to real time
interception. The underlying architecture of the Internet
prevents simple access to any user's data from any point
on the network, even if Lawful Interception is the reason
for data collection. Currently the main limitation is
physical access to the data to be intercepted. Three
scenarios for data interception exist in current networks:

A common medium: If the interception computer and
target computer are on the same shared medium, such as
Ethernet running over thin coax or across a twisted pair
medium connected by simple hub, data can be collected.
In these situations all network data is available to all
network nodes. This scenario is becoming very
uncommon, but allows interception to occur simply.

Switched environment: In most situations now,
Ethernet is deployed using layer 2 switched devices.
Only data destined for a specific device is placed onto
its medium. This increases network throughput but also
stops simple network sniffing from occurring. A simple
interception device is unable to work in this situation.

A number of methods exist for sniffing in a switched
environment, some of these methods are included as
utilities in the dsniff package. The main two methods
include using a program like macof to send large
amounts of ‘random’ frames onto the network in the
hope of overloading the lookup tables of switching layer
2 network devices. This forces certain devices 'open,
making them to act as hubs. Thus, the network segment
then acts as a shared medium. Alternatively, using the
programs arpspoof or dnsspoof to convince the network
to redirect data to a delegated intercepting machine is
possible. These solutions, although effective, are what
would be used in aillicit ‘cracking' situation and would

page2of 3



not be generaly considered Lawful
techniques.

The third option for data interception is using a
bridge situation. Hardware can be instaled a a
privileged network position intercepting and passing on
al movement of data. Hardware installation like this
requires special access, but this is not a problem in a
Lawful Interception situation as proper channels and
authorities are consulted before hardware is installed. It
is most likely that this form of data interception would
be deployed in a Lawful Interception situation. Figure 4
below gives a simple example situation of such bridged
interception. In the Figure 4, example MsgSifter is used
with remote monitoring provided by an SSH tunneled
X11 session.

‘ Remote workstation running: ‘

of X session
Public
network
SSH tunnel

Interception

X server, showing
GUI display of MsgSifter

FreeBSD transparent of X session and
bridge machine running; |, internal data
X Client &
MsgSifter
Internal data

I nternal networ k

Figure4 A simple implementaion of MsgSifter in a bridged interception
situation with remote control provided viaan
SSH tunneled X 11 windows session

V. CoNncLusioN

MsgSifter and msgsnarf is not intended for use in a
Lawful Interception Situation ‘as is. Rather, this project
is a prototype for further research and further software
development. Our goal is to move the industry away
from the idea that Lawful Interception of Internet data
must be performed indiscriminately and close to the
physical layer. Selective interception of data is possible
by parties such as I|SPs and only data requested by Law

CAIA Technical Report 030919A September 2003

Enforcement Authorities (LEAS), as set out in warrant,
need be handed over for use. It is the data discrimination
code and not the GUI or raw packet sniffing code of
MsgSifter that is the most pertinent to Lawful
Interception and thus, for further investigation and
development.

A number of possible extensions to MsgSifter have
aready been considered.

Ideally we should be able to decouple the
interception of traffic and the review of intercepted
traffic, both in time and space. However, msgsnarf and
MsgSifter currently do not cleanly support remote
monitoring. It is possible to indirectly decouple the
interception and review locations by tunneling the java
GUI's X11 session back over an ssh connection between
interception host and an operator's desktop machine.
Unfortunately thisis clumsy and uses network resources
inefficiently.

A major addition to the MsgSifter program will be
the ability to verify log integrity. This will become a
considerable issue with the Lawful Interception of
digital Internet data. How can data be intercepted, stored
and independently verified as true and correct at a later
time? The inclusion of a trusted, secure, third system to
collect time stamped, digitally signed hashes of log
components from multiple interception devices should
be investigated. This methodology would go a long way
to protect against log fraud, an easily accomplished feat
in the digital age and something that must be protected
againgt.

ACKNOWLEDGMENTS

This project was undertaken with the valued input of
Associate Professor Grenville Armitage. The project
attempts to tackle poignant issues raised by Dr Philip
Branch and relies heavily on the code of msgsnarf by
Doug Song.

RererencEs

[1] P.Branch, "LIFE - Lawful Interception for Everyone,”
http://caia.swin.edu.au/life, June 6™ 2003

[2] "Game Environments Internet Utilisation
http://caia.swin.edu.au/geniug/ (as of July 31% 2003)

[3] "MSNG666 - msn sniffer”, http://underground.or.kr/project/msn666/ (as

Study”,

of July 31% 2003)

[4] "AIM Sniff", http://sourceforge.net/projects/aimsniff/ (as of July 31%
2003)

[5] D. Song, "dsniff", http://www.monkey.org/~dugsong/dsniff/ (as of July
31% 2003)

page3of 3



