
Evaluation of the FreeBSD dummynet network
performance simulation tool on a Pentium 4-based

Ethernet Bridge

W.A Vanhonacker
Centre for Advanced Internet Architectures. Technical Report 031202A

Swinburne University of Technology
Melbourne, Australia

wendy.vanhonacker@epfl.ch

Abstract-This technical report describes a simple procedure
to estimate dummynet performance. Dummynet is a module
installed on the bridge that will allow us to subject selected
packets to delays, random loss or bandwidth limitation. The
goal is to verify how precise is dummynet since in a future
project we might use it as a traffic shaper for a network
simulation. This report is mainly based on another report from
A.L.Cricenti: "Evaluation of a Pentium PC for use as an
Ethernet Bridge" [1].

Keywords- Ethernet Bridge, dummynet,Ping

I. INTRODUCTION

The report outlines a simple procedureto estimate
dummynetperformance.We will setup a bridge as a
traffic shaper to verify a variety of situations when
dummynetis loaded.The goal is to be able to calibrate
dummynetso that the traffic correspondsto what we
want.

II. BACKGROUND

This report is essentiallybasedon [1]. The purpose
of this first reportwas to outline a simpleprocedureto
estimatethe latencycausedby a bridge.We will mainly
usemost of the tools and methodsof this report since
our work will also be to analyse the traffic going
througha bridge, but with dummynetinstalled.We will
test different scenariosto make sure that dummynet
doesn'tbehave'out of the ordinary'. The goal is to be
ableto calibratedummynetaspreciseaspossiblesothat
the measured delays and packet losses introduced by it is
what we want.

All theresultswill behelpful for furtherresearchon
network simulation where dummynet might be an
essential tool.

III. DESCRIPTION OF THE SYSTEM

To run our tests, we will be using the same
equipmentsetup as in [1]. We will follow the same
procedureto makesurethat thereareno big differences

with [1]. Thereshouldn't beanyrelevantdifferenceeven
if the hardware is different.

A. Hardware

To run our tests,we used3 machines:Two FreeBSD
PCsanda bridge,alsoFreeBSD.Thetwo first PCswere
connectedto eachother both directly (crossovercable)
or through the bridge as in figure 1.

Here are the hardware details:
� The PC with IP address136.186.229.73sendsthe

ping packetsto the secondPC. It is a mini ITX
motherboardVIA C3 Samuel2, 533.36MHz256MB
RAM runningFreeBSD4.8.It's usingaVIA VT6102
Rhine II 10/100BaseTX.

� Serverwith IP address136.186.229.94repliesto the
ICMP ping requestsfrom theclient. It is a Compaq
EVO500P41.6GHz256MB RAM runningFreeBSD
4.8. It's using an Intel Pro/100 Ethernet.

� Bridge with IP address136.186.229.72forwardsthe
packets,asusual.It will havedummynetinstalled.It
is a Compaq EVO500 P4 1.6GHz 256MB RAM

CAIA Technical Report 031202A December 2003 page 1 of 8

 136.186.229.73 136.186.229.94

FreeBSD PC1 FreeBSD PC2

 a.

 136.186.229.73 136.186.229.72 136.186.229.94

 FreeBSD PC1 Bridge FreeBSD PC2

 b.

Fig 1.Latency Test Set-up

running FreeBSD4.8. It's using an Intel PRO/100
EthernetCardandthesecondoneis an externalPCI
ethernet card.

IV.BRIDGE LATENCY

As in [1]'s procedure,we first neededto characterise
the behaviorof the FreeBSDimplementationof Ping.
Then,we will run a seriesof teststo measurethebridge
latency.

A. Ping characterisation

We first neededto checktheperformanceof theping
command.This commandssendsby default 64 bytes
ICMP packetsthat are spaced1 secondapart. As an
option,you canalsospecifydifferent inter-packettimes,
that meanssend ICMP packetsat different rates.The
goal was to find out how ping commandis accurate
when the rate is changed.

The measurementsweretakenwith both PC'skernel
tick-time granularity set to 1000Hz. Thus to analyse
ping performance we ran the following test:

� Directly connect PC1 to PC2 as in Figure1.a.
� Use tcpdumpon the destinationmachineto capture

the icmp packet. Eg: “tcpdump -i fxp0 'icmp' ”
� Send1000 packetsat different rates.Eg: “ ping -c

1000 -i 'specified wait time' dest_ip ”

The results are summarized in Fig2.

As you cansee,themeasuredping inter-packettimes
are 1ms longer than what is specifiedin the command
line and areroundedup to the next integermultiple of
1ms. This is due to the fact that the timer-tick
granularityis to coarse(1msfor 1000Hz).Basically, the
FreeBSDimplementationof pingsaddsone"timer-tick"
to the inter-packettime and roundsup the inter-packet
time to thenext integermultiple of the "timer-tick". The
conclusions are the same as in report [1].

With this conclusionwe shouldkeepin mind thatthe
ping commandalwaysadds1ms to the specifiedinter-
packet time (when the kernel granularity is set to

1000Hz).It won't makemuch differencefor low rates,
but for 1msinter-packettime which in realwould make
2ms, that meanswe changedthe rate from 1000 to
500pps.For this reason,it will be impossiblefor further
tests, using ping commands, to have accurate
measurements for more than 500pps.

B. Bridge Latency characterisation

The bridge latencywasmeasuredas outlined in the
following:

� The two PCs were connectedas in Figure1b, that
meanstheywereconnectedto eachotherthroughthe
bridge.The kernelgranularitywassetto 1000Hzon
all three machines.

� The ping packets were either 64 or 1480
bytes(actually1480+8bytesof ICMP headerdata).
The measurementswereconductedat different inter-
packettimes, from 1 to 1000ms,which corresponds
to 500 to 1 pps.The numberof ping packetsin each
test was 10000. For each rate, we did three
measurementsbecausewe wantedto makesurethat
'out of ordinary' RTTs would not damage the results.

Theresultsfor theping inter-packettime at 1000ms,
10ms and 20ms are shown in table 1.

From Table1, we canseefor example,that at a rate
of 48pps(20msspacedpackets),the averagelatencyis
42.5usfor 64Bpacketsize,andat a rateof 91pps(10ms
spacedpackets),we havea latencyof 40us. For packets
of 1480B, we have an averagelatency of 269us for
48pps and 270us for 91pps.

To makesurethat nothing 'out of the ordinary' was
happening,we plottedthe resultsof sometests.We saw
consistentroundtrip times,with theexceptionof oneor
two outliers.Figure3 is a plot of 64B ping packetssent
at 10 and 1000ms inter-packet time.

CAIA Technical Report 031202A December 2003 page 2 of 8

Fig 2. Inter-Packet Ping Time
Table 1. Ping RTT and Bridge Latency for 64B and 1480B packets

0 5 10 15 20 25 30 35 40 45 50

0

5

10

15

20

25

30

35

40

45

50

55

Specified Inter-Packet Ping Time ms

M
ea

su
re

d
In

te
r-

P
ac

ke
t P

in
g

T
im

e
m

s

Comments Inter-packet Packet Size Min Avg Max Std Bridge

Time ms B ms ms ms ms Latency us

No bridge 1000 64 0.12 0.14 0.52 0.02 0

Bridge test 1 1000 64 0.19 0.22 0.63 0.01 35

Bridge test 2 1000 64 0.21 0.24 1.76 0.04 42

Bridge test 3 1000 64 0.21 0.23 0.56 0.02 41.5

No bridge 10 64 0.08 0.09 0.6 0.02 0

Bridge test 1 10 64 0.16 0.17 0.47 0.01 40

Bridge test 2 10 64 0.16 0.17 0.52 0.01 40

Bridge test 3 10 64 0.16 0.17 0.5 0.01 39.5

No bridge 20 64 0.08 0.09 0.45 0.02 0

Bridge test 1 20 64 0.16 0.18 0.5 0.02 42.5

Bridge test 2 20 64 0.16 0.18 0.49 0.02 42.5

Bridge test 3 20 64 0.16 0.18 0.61 0.02 42.5

No bridge 10 1480 0.4 0.42 0.8 0.02 0

Bridge test 1 10 1480 0.94 0.96 1.31 0.02 269.5

Bridge test 2 10 1480 0.94 0.96 1.24 0.02 270

Bridge test 3 10 1480 0.94 0.96 11.95 0.16 270.5

No bridge 20 1480 0.4 0.42 0.52 0.02 0

Bridge test 1 20 1480 0.94 0.97 1.38 0.02 269

Bridge test 2 20 1480 0.94 0.97 1.32 0.02 269

Bridge test 3 20 1480 0.94 0.97 1.41 0.02 269

Fig 3a. Ping RTT Plots for ping 64B packets going through the bridge at 10
ms inter-packet time (91pps)

Fig 3b. Ping RTT Plots for ping 64B packets going through the bridge at
1000ms inter-packet time (1pps)

An interesting observation is that the statistics don't
correspond to [1]. The bridge used in his test was
working on 100 or 200MHz CPU clock. My bridge uses
1.6GHz. But apparently the latency of my bridge is
higher. Even without the bridge the round trip time is
higher. We thought that this additional latency might
have come from the ethernet card on the client (the
Rhine II 10/100BaseTX card). We thus did some further
tests with another Ethernet card on the client: an Intel
Pro 10/100b/100+ Ethernet. The results are in Table2.

As you can see, there is not much difference, but
there is still. The latencys are a bit higher in the second
case. Compared to the results in [1], without the bridge,
our first setup (with the first ethernet card) has an
average of 8us of additional latency and the second
setup (with the Intel card) has 19us of additional latency.
We haven't found the reasons for this overweight, but it
will cause an overall additional latency in all the other
results compared to the corresponding scenarios in [1].

We also sent ping packets with other rates to see how
it affects the latency. Figure 4 shows how the bridge
latency changes compared to the inter-packet time. As
you can see, the rate doesn't influence the latency. The
latency doesn't change that much from one rate to
another.

We also did the same tests at higher rate to make sure
that nothing would go 'out of the ordinary'. Again the
number of packets sent is 10000. The results for 1 and
2ms inter-packet time, resulting respectively to 500 and
333pps are shown in table 3.

As you can see, when we compare with Table 2, the
average latency for higher rates is the same. For 64 bytes
packets, the latency stays around 42us and for 1480
bytes packets it is around 270us, which was the same for
lower rates (inter-packet times between 1000 and 5ms).
Thus we can conclude that modest packet rates do not
affect bridge latency.

CAIA Technical Report 031202A December 2003 page 3 of 8

Fig 4: Bridge Latency versus inter-packet time for 64B packets.

Table 2. Ping RTT and Bridge Latency for 64B and 1480B packets with the
second ethernet card

0 200 400 600 800 1000

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Packet Number

R
tt

m
s

0 200 400 600 800 1000

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Packet Number

R
T

T
 m

s
Comments Wait Time Packet Size Min Avg Max Std Bridge

ms B ms ms ms ms Latency us

No bridge 1000 64 0.13 0.15 1.04 0.02 0

Bridge test 1 1000 64 0.21 0.23 0.92 0.01 41.5

Bridge test 2 1000 64 0.21 0.23 0.38 0.01 41.5

Bridge test 3 1000 64 0.21 0.23 1.1 0.02 41.5

No bridge 10 64 0.09 0.1 0.61 0.01 0

Bridge test 1 10 64 0.17 0.18 0.39 0.01 39

Bridge test 2 10 64 0.17 0.18 0.29 0.01 39

Bridge test 3 10 64 0.17 0.18 0.96 0.02 39

No bridge 20 64 0.09 0.11 0.54 0.01 0

Bridge test 1 20 64 0.17 0.18 0.25 0.01 38.5

Bridge test 2 20 64 0.17 0.18 0.59 0.01 38.5

Bridge test 3 20 64 0.17 0.18 0.69 0.01 38.5

No bridge 1000 1480 0.43 0.45 0.6 0.01 0

Bridge test 1 1000 1480 0.98 1.01 1.59 0.02 280.5

Bridge test 2 1000 1480 0.95 1.01 2.83 0.02 280.5

Bridge test 3 1000 1480 0.98 1.01 1.7 0.02 280.5

No bridge 10 1480 0.38 0.4 0.91 0.01 0

Bridge test 1 10 1480 0.93 0.94 1.51 0.01 271.5

Bridge test 2 10 1480 0.93 0.94 11.94 0.11 271.5

Bridge test 3 10 1480 0.93 0.94 1.8 0.01 271.5

No bridge 20 1480 0.38 0.4 1.13 0.02 0

Bridge test 1 20 1480 0.93 0.94 21.92 0.21 272

Bridge test 2 20 1480 0.93 0.95 1.71 0.02 271

Bridge test 3 20 1480 0.93 0.95 21.95 0.21 272

0 5 10 15 20 25 30 35 40 45 50

30

31

32

33

34

35

36

37

38

39

40

Specified Inter-packet time ms

La
te

nc
y

us

Figure 5 and 6 show the cumulative relative
frequency for 64B and 1480B pings packets at different
rates (2, 10, 20, 1000ms equivalent to 333, 91, 49, 1pps),
without and with the bridge in the middle. These tests
were run with the second Ethernet card on the client (the
Intel Pro 10/100b/100+ Ethernet card) .

V.DUMMYNET

FreeBSD's dummynet uses the kernel-resident ipfw
(firewall) functionality to select packets that are to be
subjected to packet delay, random loss or bandwidth
limitation. For our tests, we forced all packets going
from the client to the server and vice versa to go through
a 'pipe'. Those pipes will define what delay, loss and
bandwidth the packets are subjected to.

A. Dummynet Latency

First we wanted to know if the latency was increased
when dummynet was installed on the bridge. The bridge
latency was again measured, as follows:

� Both client and server's kernel granularity are
changed to 1000HZ.

� Dummynet was loaded. Pipes were created for both
ways (client to server and server to client) and
configured so that the packets going to the bridge
suffered no delay. Eg: “ipfw add pipe 1 ip from any
to any bridged” and “ipfw pipe 1 config delay 0ms”

� 64B ping packets were sent at different rates: The
inter-packet time varied from 1 to 1000ms. The
number of packets in each test was 10000. We ran
the test twice for each combination.

The results are gathered in Table 4.

As you can see, the rate doesn't influence the delay
that much: compared to the average bridge latency
without dummynet installed, the difference is of the
order of 2-8us.

Installing dummynet and ipfw on the bridge
increased the latency from 41.5us to 53us for 1pps
(1000ms), from 39us to 44.5us for 91pps (10ms), from
41us to 44us for 333pps (2ms) and from 42us to 44us for
500pps (1ms) for 64B packets.

Figure 7 shows the cumulative frequency
distributions for 10,20,1000ms inter-packet time (91, 48
and 1pps) without and with.

CAIA Technical Report 031202A December 2003 page 4 of 8

Fig 5:Round Trip Latency Cumulative distribution for 64B packets

Fig 6:Round Trip Latency Cumulative distribution for 1480B packets

Table 4: Ping RTT and Bridge Latency with ipfw and Dummynet installed

Table 3. Ping RTT and Bridge Latency for 64B and 1480B packets at high
rates

Comments Wait Time Packet Size Min Avg Max Std Bridge

ms B ms ms ms ms Latency us

No bridge 1 64 0.09 0.09 0.22 0.01 0.0

Bridge test 1 1 64 0.17 0.18 6.52 0.1 41.5

Bridge test 2 1 64 0.17 0.18 0.3 0.02 45

Bridge test 3 1 64 0.17 0.18 0.72 0.02 43.5

No bridge 2 64 0.09 0.1 0.51 0.01 0.0

Bridge test 1 2 64 0.17 0.18 0.61 0.02 41

Bridge test 2 2 64 0.17 0.18 0.53 0.02 41.5

Bridge test 3 2 64 0.17 0.18 0.66 0.02 41.5

No bridge 1 1480 0.38 0.4 5.63 0.13 0.0

Bridge test 1 1 1480 0.92 0.94 2.79 0.04 271

Bridge test 2 1 1480 0.92 0.94 1.09 0.01 269

Bridge test 3 1 1480 0.92 0.94 1.28 0.02 269.5

No bridge 2 1480 0.38 0.4 4.18 0.09 0.0

Bridge test 1 2 1480 0.92 0.94 3.94 0.04 269.5

Bridge test 2 2 1480 0.92 0.94 3.92 0.04 270

Bridge test 3 2 1480 0.92 0.94 3.92 0.04 271

0 50 100 150 200 250 300 350 400

0

10

20

30

40

50

60

70

80

90

100

Without
bridge,91pps

Without
bridge,48pps

Without
bridge,20pps

With bridge,1pps

With bridge,91pps

With bridge,48pps

With bridge,20pps

With bridge,1pps

Ping RTT us

C
um

ul
at

iv
e

R
el

at
iv

e
F

re
qu

en
cy

 %

200 450 700 950 1200

0

10

20

30

40

50

60

70

80

90

100

Without
bridge,333pps

Without
bridge,91pps
Without
bridge,48pps

Without
bridge,1pps
With bridge,333pps

With bridge,91pps

With bridge,48pps
With bridge,1pps

Ping RTT us

C
um

ul
at

iv
e

R
el

at
iv

e
F

re
qu

en
cy

 %

Comments Wait Packet Min Avg Max Std Dev Bridge

Time ms Size B ms ms ms ms Latency us

No bridge 1000 64 0.13 0.15 1.04 0.02 0

Dummynet test 1 1000 64 0.21 0.24 0.81 0.01 53

Dummynet test 2 1000 64 0.21 0.24 0.6 0.01 53

No bridge 10 64 0.09 0.1 0.61 0.01 0

Dummynet test 1 10 64 0.17 0.18 0.82 0.01 44.5

Dummynet test 2 10 64 0.17 0.18 0.35 0.01 44.5

No bridge 2 64 0.09 0.1 0.51 0.01 0

Dummynet test 1 2 64 0.17 0.18 0.33 0.01 43.5

Dummynet test 2 2 64 0.17 0.18 0.53 0.01 44

No bridge 1 64 0.09 0.09 0.22 0.01 0

Dummynet test 1 1 64 0.17 0.18 0.72 0.02 44

Dummynet test 2 1 64 0.17 0.17 0.75 0.01 43.5

B. Dummynet Delay

The first option that we can control with dummynet
is the delay on the traffic. This is mainly used to
simulate different distance between machines. We thus
need to check the accuracy of dummynet specified
delays. The bridge latency was again measured, as
follows:

� Dummynet delay was varied from 1000ms to 1ms at
1pps packet rate. Eg: “ ipfw pipe 1 config delay
'delay'”.

� Ping packets were sent from PC1 to PC2. The
number of packets in each test was 10000.

The results for 1pps rate are summarized in Table 5.

As you can see the higher is the delay, the more
precise is dummynet. For 1ms of delay, the measured
delay is 0.74ms which is 74% of what is specified. For
50ms, the measured delay is 49.734ms which is 99%
precise.

C. Dummynet Delay versus rate

This first tests were conducted at a regular rate of
1pps. To make sure that dummynet supports higher
rates, we ran the same test with different rates. If

dummynet is stable, the real delay should not vary with
the rates. For each dummynet delay chosen like in Table
5, we varied the inter-packet time from 1ms to 500ms.
The number of ping packets sent for each test was
10000. The results are in table 6.

As you can see, the real delay is not influenced by
the rate. It stays pretty much stable. At any rate, the
measured delay is what we expected. Figure 8 is a
graphical result of the measured delay versus the
specified delay and the rate, for delays from 1 to 50 ms
and packet rates from 2 to 500pps. Clearly, dummynet
doesn't suffer from different packet rates traffic, the
measured delays are almost the same (1us of precision):
all the lines (each corresponding to one rate) are one
over each other.

D. Dummynet Packet Loss

Another option that we can control with dummynet is
the packet loss on the traffic. The packet loss was
measured, as follows:

� Dummynet random loss was varied from 2 to 95% at
1pps packet rate. Eg: “ ipfw pipe 1 config plr
'packet_loss'.

CAIA Technical Report 031202A December 2003 page 5 of 8

Fig 7:Round Trip Delay Cumulative Distribution for 64B packets at
91,48,1pps

Fig 8: Real delay versus specified delay and rate

Table 6: Real delay in us versus Dummynet specified delay (ms) and inter-
packet time ms

Table 5: Dummynet Delays Statistics at a rate of 1pps

50 100 150 200 250 300 350

0

10

20

30

40

50

60

70

80

90

100

Without
bridge,91pps
Without
bridge,48pps
Without bridge,
1pps

With bridge,91pps
With bridge,48pps

With bridge,1pps

Ping RTT us

C
um

ul
at

iv
e

R
el

at
iv

e
F

re
qu

en
cy

 %

Dummynet Min Avg Max Std Dev One-Way

Delay ms ms ms ms ms Delay us

1 1.1 1.61 2.16 0.29 740

2 3.1 3.61 4.17 0.29 1740

5 9.1 9.61 11.03 0.29 4740,5

10 19.1 19.61 20.15 0.29 9739

25 49.1 49.6 50.15 0.29 24737.5

50 99.09 99.6 100.14 0.29 49734.5

75 149.09 149.59 150.14 0.29 74731.5

100 199.08 199.59 201.04 0.29 99728.5

500 998.98 999.49 1007.74 0.3 499682

1000 1998.86 1999.37 1999.89 0.29 999619

Inter-pack ms 500 333 200 66 40 20 10 2

Delay ms

0 0.0 0.0 0.0 0.0 0.0 0.1 0.1 0.1

1 0.8 0.7 0.8 0.7 0.8 0.8 0.8 0.8

2 1.8 1.8 1.8 1.8 1.7 1.7 1.8 1.8

5 4.7 4.7 4.8 4.7 4.8 4.8 4.8 4.8

10 9.7 9.8 9.7 9.8 9.7 9.7 9.8 9.8

25 24.7 24.8 24.7 24.8 24.7 24.8 24.8 24.8

50 49.7 49.8 49.7 49.8 49.7 49.7 49.8 49.8

75 74.8 74.7 74.8 74.7 74.7 74.7 74.8 74.8

100 99.8 99.8 99.8 99.7 99.7 99.8 99.8 99.8

500 499.6 499.7 499.7 499.7 499.7 499.7 499.7 499.7

1000 999.6 999.6 999.6 999.6 999.6 999.6 999.7 999.7

0 10 20 30 40 50

0

5

10

15

20

25

30

35

40

45

50

500

333

200

66

40

20

10

2

Dummynet delay ms

R
e
a

l
d

e
la

y
 m

s

� Ping packets were sent from PC1 to PC2. The
number of packets in each test was 10000.

We did 3 runs for each probability at 1pps, plus
some at different rates (50,25,15,5,2,1ms inter-packet
time). The results are in table 7.

From Table 7, we can conclude that dummynet
probability of loss is pretty accurate. Dummynet
achieves in average 98% precision on packet loss.

We also wanted to check how the packet loss is
distributed over time. This will show how random
dummynet forces the packet to get lost. In Figure 9 we
ran dummynet with a packet loss of 7% at different
packet rates to see how random the packet are lost. Each
row is one run at a specific rate (1pps three times, 17
and 38pps). Each data point is a 'loss event'. What we
want to see is if there is any persistent cluster at a
specific time, or if the packets are just lost randomly at
no particular moment (or packet number), this might be
the case when the loss depends also on the packet queue

waiting to be sent through the pipe. Our conclusion is
that the distribution looks pretty random: there is no
burst in the loss distribution.

VI. CONCLUSION
We can build an Ethernet Bridge from a simple

PC with minimum 2 Ethernet cards. By loading
dummynet on this bridge, we can easily implement a
simple network simulator .

The RTT of 64 and 1480 bytes ping packets was used
to obtain an estimate of the average bridge latency.
Using this method we found that the average bridge
latency was 39us for 64B packets and 275us for larger
packets (1480B).

As a traffic shaper, we installed dummynet on the
bridge which is a simple tool to select packets that we
want to delay or who should suffer packet loss. The
overhead introduced by loading dummynet increased the
average latency from 39 to 48us for 64B packets.

Dummynet is pretty accurate concerning delays and
packet loss, the results match our requests: the measured
delays and packet loss corresponds to the delays and
packet loss configured in dummynet's setup. Dummynet
is thus a satisfying and simple tool for network
simulations.

ACKNOWLEDGEMENTS

Lawrence Stewart and Claudio Favi provided a big
support on the installation of the testbed, their help was
much appreciated. I am also grateful for the assistance
that G. Armitage gave me in preparing this report.

REFERENCES

[1] A.L. Cricenti, "Evaluation of a Pentium PC for use as an Ethernet
Bridge", CAIA Technical Report 030326A, March 2003,
http://caia.swin.edu.au/reports/030326A/CAIA-TR-030326A.pdf.

[2] L.Rizzo "Dummynet" http://info.iet.unipi.it/~luigi/ip_dummynet.

[3] L.Rizzo, "Dummynet: a simple approach to the evaluation of network
protocols", http://info.iet.unipi.it/~luigi/dummynet.ps.gz.

[4] "FreeBSD handbook, http://www.freebsd.org/doc/en_US.ISO8859-
1/books/handbook/

CAIA Technical Report 031202A December 2003 page 6 of 8

Table 7: Dummynet Packet Loss Statistics at a rate of 1pps

Fig 9: Packet Loss distribution for 7%loss at 1,20 and 40pps

Dummynet Real loss rate packet Dummynet Real loss rate packet

Loss(%) (%) interval (ms) Loss(%) (%) interval (ms)

2 1.7 1000 35 34.7 15

2 1.5 1000 35 32.3 5

2 2.93 1000 35 35.43 2

2 1.5 50 35 35.31 1

2 2.2 15 50 50.4 1000

2 0.9 25 50 52.2 1000

2 1.8 5 50 46.4 1000

2 2.05 2 50 48.8 50

2 2.09 1 50 50.1 25

5 4.3 1000 50 50.2 15

5 4 1000 50 48.1 5

5 3.9 1000 50 50.08 2

5 4.8 50 50 50.55 1

5 4.7 25 65 66.53 1000

5 5.2 15 65 64 1000

5 5 5 65 65.7 1000

5 5.31 2 65 64.96 50

5 5.14 1 65 63.6 25

7 6.5 1000 66 65.8 15

7 7.4 1000 66 64.53 5

7 7.6 1000 65 64.89 2

7 7.62 50 65 65.64 1

7 6.9 25 85 84.38 1000

7 8.8 15 85 85.6 1000

7 7.71 5 85 85.54 1000

7 5.14 2 85 84.6 50

7 5.36 1 85 85.03 25

15 14.7 1000 85 84.66 15

15 16.52 1000 85 84.05 5

15 14.4 1000 85 84.6 2

15 15.7 50 85 84.47 1

15 15.1 25 95 95.97 1000

15 14.4 15 95 95.15 1000

15 13.8 5 95 95.15 1000

15 15.17 2 95 95.19 50

15 14.87 1 95 94.55 25

35 35.87 1000 95 94.76 15

35 33.5 1000 95 95.08 5

35 34.2 1000 95 94.74 2

35 35 50 95 95.04 1

35 34.8 25

0 200 400 600 800 1000

1pps,test1

1pps,test 2

1pps.test3

20pps

40pps

Packet Number

Lo
ss

Appendix 1 – Network setup

Outlined below are the configuration changes
required to setup the network. That is: the 2 machines
and the bridge with dummynet and ipfw.

A. Client and server software configuration

1. In order to test our bridge at high rates you need to
make sure that the destination, PC2 in our case,
doesn't limit the number of icmp incoming packets.
This limit is usually used to protect your machine
from unwanted packet floods. Do the following:

%sysctl net

to check the kernel variable concerning the
network.. And to change the variable, do, as root:

%sysctl net.inet.icmp.icmplim=10000

2. To setup authentication between machines, you need
to create key pairs. This will allow you to ssh as root
to the remote machine without having to give any
password. First, edit /etc/sshd_config on the machine
you want to ssh too, the remote machine (PC2). Set
“PermitRootLogin variable to YES, and uncomment
the line. Than do the following on your
machine(PC1):

% ssh-keygen -t rsa on the machine you want to ssh
from.

%scp /root/.ssh/id_rsa.pub root@PC2:/root/.ssh/.

On PC2, do:

%cd /root/.ssh

%cat id_rsa.pub >> authorized_keys

You need to do this to each pair of machines you
want to ssh as root from one to the other.

B. Bridge software configuration

1. To automatically load the bridge kernel module at
boot-up edit the /boot/loader.conf file to include the
following:

bridge_load=”YES”

For dummynet, you need to add the ipfw module,
thus add to the same file:

ipfw_load=”YES”

2. Loading the dummynet module using the above
mechanism doesn't work. However, we can run a
shell script at boot-up which will load the dummynet
kernel module. You thus have to create a shell script
in /usr/local/etc/rc.d/ with the following line

kldload dummynet

With this configuration, you should still not be able
to use your bridge with dummynet. This is because ipfw
has a default law that deny any packet from any to any.
In the same script add these line to create the pipes you
will use. Make sure the shell script is executable. That is
for example:

ipfw add pipe 1 ip from any to any bridged

ipfw add allow ip from any to any

3. Dummynet performs its task once per timer tick;
since the default granularity is 100Hz, this limits
delays to be larger than 10ms. You need to rebuild
the kernel. The kernel configuration is set in
/usr/src/sys/i386/conf/. Create a new kernel
configuration file (copy the default one), and add this
line to it and then run the the following:

options HZ=1000 #sets timer granularity
to 1000Hz.

%config NEWGENERIC

%cd ../../compile/NEWGENERIC

%make depend && make && make install

4. Add the following to /etc/sysctl.conf

#for bridging

net.link.ether.bridge=1

net.link.ether.bridge_cfg=if1:x.if2:x

where if1:x refers to the interface and cluster on
which bridging is enabled, in our case:
net.link.ether.bridge_cfg=fxp0:1,rl0:1

#for ip firewall

net.link.ether.bridge_ipfw=1

#for dummynet

net.link.ip.fw.enable=1

net.inet.ip.fw.one_pass=1

5. Finally add these lines to /etc/rc.conf

gateway_enable=”YES”

firewall_enable=”YES”

firewall_script=”/etc/rc.ipfw”

6. Change /etc/rc.ipfw to configure your pipes. Add:

ipfw pipe 1 config delay 0ms

This can also be issued from the command line.

You should know be able to use the bridge as a
traffic shaper. To change dummynet configuration, such
as the delay or packet loss, do:

ipfw pipe 1 config delay 10ms

ipfw pipe 1 config plr 0.15

CAIA Technical Report 031202A December 2003 page 7 of 8

Appendix 2 – Procedure

a) Get the files

This is the procedure used to run all those tests by
yourself. A bunch of scripts have been written to fasten
the process. You need to get NETTESTS directory from
mordor:

%mkdir NETSIM

%scp -r mordor:/home/wendyv/NETTESTS
NETSIM/.

Note: mordor's ip address: 136.186.229.17

You should have different scripts and four folders:
data, logs, src and bridgeSetup. Data will gather all the
measurements results and logs all the ping logs mainly.
Src contains all the source c programs and bridgeSetup
has all the files that you will need to copy into your
bridge. The first group of script you will use are the ping
scripts which run a series of pings with different
situations. These are: nobridgeWait.sh,
noBridgeLatency.sh, LatencyAll.sh.

The second group are the scripts who will read the
logs and gather the results into the data folder. These
are: WaitResults.sh, LatencyResults.sh, DelayResults.sh,
LossResults.sh, CumFreqResults.sh. These files use c
programs located in the src folder: readWait.c,
readLatencyAll.c, readDummynetDelay.c
readDummynetLoss.c

b) Get the measurements and results

The first tests should be run without the bridge in the
middle, that means PC1 should be connected directly to
PC2 (see Figure 1a). you need to define a client and a
server. The client should have all the source code copied
from mordor.

1. First connect the client to the server with a crossover
cable. You need to make sure that they don't have a
default route to another machine, if it does do: “route
delete default” as root one both machines. You can
check with “netstat -rn” if everything is ok.

2. Check that you can ping from one to the other. Try to
ssh also.

The following makefile will run all the pings
necessary to have sufficient data for our
measurements. It will then gather the results into one
file. You first need to edit the makefile and change
some variable so that it corresponds to your settings
(such as ip addresses, directory name, etc..). Then
run as root: % make -f Makefile_noBridge

3. There should be a new file in the 'data' folder:
WaitTime.txt which gives a table corresponding to
the ping specified versus the measured inter-packet
time (needed for ping characterisation as in chapter
IV.A.

Now we will do the rest of the tests with the bridge
installed between the two other machines.

1. Connect the client to the bridge and bridge to server
with a crossover link. Since you might only have one
ip address for the bridge (the 3 computers are on the
same subnetwork), it is better if you put the ipaddress
visible to the client.

2. Setup the bridge as explained in [1] Appendix 2. But
don't install ipfw and dummynet yet. Just setup the
bridge.

3. Create a folder on the bridge which should have the
same path as in your client. Copy all the files that are
in bridgeSetup into this folder.

4. Make sure you can ping and ssh between the client to
the two other machine, especially to the bridge, and
from the server to the client. For all these pairs, you
need to have root login access and ssh authorization
to login without a password (you need to generate
keys, see Appendix 1).

5. Edit and change the following makefile, in order to
correspond to your settings. This makefile runs the
pings, writes some logs, gathers the results and
creates simple tables with all the data. Run as root:
% make -f Makefile_withBridge

6. You should have new files in the data folder:
Latency.txt , Cumulator.txt, dataFlood.txt,
DummynetDelay.txt, LossPlot.dat,
DummynetLoss.txt, WaitTime.txt plot.dat

Latency.txt compares the ping ran with the bridge to
the ones without bridge. DummynetDelay.txt is more
concerned with dummynet delays depending on rate,
and specified delay. DummynetLoss.txt looks at the
packet loss accuracy of dummynet, comparing specified
packet loss to real packet loss percent. Cumulator text
files are the data for the Cumulative Relative Frequency
plots (Figure 5, 6, 7). LossPlot.dat and plot.dat are for
plotting purposes (Figure 8, 9). All the logs of the ping
requests are in the 'logs' folder. You should have 3
folders in there : NOBRIDGE for the pings tests without
a bridge in the middle, BRIDGE1000HZ for the tests
with the bridge installed but not dummynet, and
DUMMYNET, for the dummynet measurements.

CAIA Technical Report 031202A December 2003 page 8 of 8

