
Preliminary Results on an Inverted Capacity
Network Simulation

W.A.Vanhonacker1

Centre for Advanced Internet Architectures. Technical Report 040227B
Swinburne University of Technology

Melbourne, Australia

Abstract- We report the results of several experiments that
were performed to evaluate the benefits and draw backs of an
inverted capacity network. The results were obtained from a
tool created in our lab: Simple Web Inverted System
Simulation, SWISS. This tool allows us to simulate a web page
request on any kind of network architecture and compute the
download time of the requested web page. This tool is based on a
module called Dummynet. The download time is computed from
an extended wget command.

Keywords- Simulation, inverted capacity network, download
time.

I. INTRODUCTION

This technicalreportoutlinesthe resultsgatheredby
several test conducted at the Center for Advanced
Internet Architecture (CAIA) to define the
characteristicsand benefits of an inverted capacity
network. In such a network, the actual low-bandwidth
last-milebecomesa high bandwidthservicein the order
of multi-megabitsor even gigabits per seconds.The
currentratio of edgeto corebandwidthwill be inverted.
This highly increased access network allows any
customerwith sufficient storagecapacity to act as a
possiblecontentcachefor other nearbyneighborhoods.
Being able to push the content close to the user
obviouslybrings a relevantdecreasein downloadtime.
The aim of our experimentsis to measurethis decrease
and thus 'measure' the benefits of this type of
architecture.

This reportwill showthe influenceof the web page
content and the delay on the download time. How
people, such as web designers,can decreasecontent
downloadtime by a good factor when structuringthe
web content the right way.

The Simple Web Inverted System Simulator
(SWISS) is the tool used to gather those results.

II. TOOL DESCRIPTION

A. Tool modules

The tool is basedon two basicmodulesfor network
architectureand traffic analysis: Dummynet [1] and
wget [2]. Dummynetis a FreeBSDkernel functionality
providing configurable control on selectedpackets
going througha 'link', such as delays,randomloss or
bandwidth.This will thusbe our basictool for network

simulation adding delay to represent real distance
betweenmachines.The secondmoduleis wget which is
a simple utility for non-interactivedownload of files
from the web. Wget has been extended in order to output
theactualtotal downloadtime of the file. Wgetactslike
a Webclient,but it doesn'tfollow thesameprocedureas
in regularbrowsers,the connectionprotocol is different
(wgetcanonly keeponeconnectionat a time,compared
to mostbrowserswho cankeepmore).We thusrealize
herethat this utility will not beprecisein theresults,but
in our application,themainconcernwasactuallyto first
generatea tool who would performthesimulationof the
downloadaction,ultimately,we canimprovethetool by
implementinga more precisecomputing of download
time. Oncethe tool is operational,anotherutility could
bethendevelopedthatwill actuallysensethetraffic and
analyse by itself the download times and so on.

In order to comparethe traditional architecturethat
we usenowadaysandan invertedcapacitynetwork,we
neededa simple tool that will senda web pagerequest
andgatherthedifference of downloadtimeat theoutput
betweenthetwo possiblearchitecture. We didn't want to
useto muchhardware,so the networkhadto be mostly
virtual.

B. Network architecture

The tool had to allow us to simulate any kind of
architecture,especiallyallowing liberty in the choiceof
thedistancebetweenthe client (who will requesta web
page)andtheserver.Our main interestis to comparean
inverted capacity network to a conventionalnetwork.
The traditional network basically involves a client, a
server and also a cache that will be used when the
documentor one of its objects is cachable.The delay
between those three machines is going to be
configurable.The inverted network also involves the
samearchitecture,but herethe cacheis going to be as
close as possible to the client, effectively at a 0ms delay.

The basic testbed architecture is shown in Figure 1.

The hardware used in our tests are as follows:
� Theclient is a PCwith IP address136.186.229.99.It

is a CompaqEV) 500 P4 1.6GHz 256MB RAM
runningFreeBSD4.8 with an Intel Pro/100Ethernet
card.

� Thebridgeis a PCwith IP address136.186.229.72.It
is a CompaqEV) 500 P4 1.6GHz 256MB RAM

1 This work was performed while working for Swinburne University of Technology. Wendy Vanhonacker can be contacted at wendy@vanhonacker.ch

CAIA Technical Report 040227B February 2004 page 1 of 7

running FreeBSD 4.8 with an Intel Pro/100 Ethernet
card.

� The servers are virtual hosts set up on one PC. The
PC is a mini ITX motherboard VIA C3 Samuel 2,
533.36MHz 256MB RAM running FreeBSD 4.8 with
a VIA VT6102 Rhine II 10/100BaseTX. This PC is
using the Jail Host Toolkit (JHT) [3] in order to have
three virtual hosts (jails) which each have their own
IP address:

� 136.186.229.213 for the main remote server,
� 136.186.229.212 for the cache used in real

network simulation,
� 136.186.229.211 for the cache used in inverted

capacity network simulation.

Dummynet is installed on the bridge [4]. It controls
the delays between the client, and the server, and
between the client and the caches (one for regular
simulation, and one for inverted network where the
delay is always set to 0).

C. Downloaded page contents

In order to see the influence of the web page contents
in the download time, the user can only choose a web
page from a list of predefined ones or can create their
own. Once the page is created and copied to the server,
the SWISS tool simulates the download request and
compute the download time. The download time is
mainly influenced by two factors: the delay which is
taken care by dummynet and the web page being
downloaded. The content of the page and some other
characteristics such as its cachability or its size may
increase or decrease the download time. We thus need in
our simulation to allow the user to choose between a
multitude of possible documents so that he can see the
influence each feature has on the simulation.

The list of predefined pages is meant to be
representative to the real web contents of todays
Internet. In order to define this set, we analyzed in a
parallel project [5] the contents of a big set of web pages
from the Internet and defined the main characteristics of
a typical web page. Out of those results, we created a
representative set of pages which is the list of predefined
pages for our tool. We categorized web pages into 8
different classes. We then created a sample of each

classes so that it represents a global image of all web
pages.

So the user of the tool has to choose between one of
the classes of web page he wants to download. He also
needs to choose the number of objects, the number of
cachable objects (if there are any) and the size of the
objects.

We didn't want to let the user to much free in his
decisions so we imposed a choice of 5 or 30 objects
only (or 0 of course). From an earlier research [5], we
found that more than 80% of objects on a web page are
cachable in average. Thus the number of cachable
objects was reduced to 0, 4 or 5 if the total number of
objects is 5 and 0, 24 or 30 if the total was 30 (4 is 80%
of 5 and 24 is 80% of 30).

The user also has to choose the order of the objects
(ordered, reversed or mixed), since the sequence of the
objects also influences the download time. The order are
defined like this:

1. ordered: the non-cachable objects come first
then the cachable ones

2. reversed: the cachable ones come first then the
non-cachable

3. mixed: no particular order, cachable and non-
cachable objects are mixed.

D. The SWISS GUI

A GUI has been implemented in order to facilitate
the user experience. Figure 2 and Figure 3 show
snapshots of the tool.

Figure 2 is a snapshot of the first part of the setup:
the population setup. In order to simulate a download of
a page, the tool first needs to actually create those pages.
Before the simulation, the use has to define a few set of
pages; the tool will create them, and send them on the
servers. This is the opportunity for the user to actually
decide what kind of documents he wants to simulate,
since the structure of a document influences the
download time (See ch IV.C).

To create a page the user needs to define the number
of objects in the document, their size, their cachability,
the sequence in which the pages will be displayed (what
order will have the cachable objects and the non-
cachable objects) and the cachability of the document
also.

Figure 3 is the second part of the setup: the
simulation setup. This is where the user will calibrate
the parameters for the download process. The upper part
of the GUI defines the simulation parameters and the
lower part defines the web page the user want to
download. He can choose one or several pages to
download all in one. The user can only choose the pages
he has created in the first part, at the population setup.

CAIA Technical Report 040227B February 2004 page 2 of 7

Figure 1 Basic network architecture

Cache server for the
traditional network

Cache server for the

136.186.229.211

Bridge machineClient machine

136.186.229.99 136.186.229.72

Main remote server

136.186.229.213

136.186.229.212

inverted network

III.RESULTS AND ANALYSIS

We are now going through the results of our
simulations. There are a few different parameters the
user can choose before starting the simulation. Those
parameters such as delay or size of the objects in the
web page will greatly influence the results of the
download time. Some of the influences are obvious, but
other might not have been so clear.

A. The download process

In order to understand how the download time is
computed, we need to know how a web page is actually
downloaded from any server. This process depends a lot
on the utility used: the most common one is our web
browser, Netscape, Mozilla, etc... In our case we use
wget which is a simple tool called from the command
prompt. The most useful property is that wget can act as
a web robot (also called crawlers or spiders) by
downloading recursively all the contents of a web server
(with the '-r' argument). Because of this ability to steal
everything, various robot exclusion schemes have been
devised as a means for the server administrators and
document authors to protect chosen portions of their
sites. The more popular mechanism is the Robots
Exclusion Standard, or RES. It specifies the format of a
text file containing directives that instruct the robots
which URL paths to avoid. So when a recursive
download is requested, the server sends back to the
client this robots.txt file, if the clients asks for it. Since
most of the web browsers and other search engines use
this robots.txt, we forced wget to request this robots.txt.

Figure 4 shows in details how a non-cachable page
with 5 objects, 4 cachable in ordered and mixed order is
transferred to the client. An ordered sequence of objects
means that in the document all the non-cachable objects
come first then the cachable ones. A mixed sequence is
when cachable and non-cachable objects don't have any
particular order. Note that any cachable object or
document will be stored in a cache server, thus its'
download is always shorter than if it wasn't cachable and
on the remote server (since the cache is always closer to
the client than the remote server).

1. First the client connects to the server and sends a
request with the name of the html page to be
downloaded. The server sends back the main html
page. It then reads through the document and finds
the location of each objects: whether it is on the same
server or if it has been cached on another closer
server). It remembers the order of those locations.

2. Now, the client needs to get the robots.txt file from
each server. It is going to connect to each server in
the same order as the order the objects appear on the
document. Thus the client connects to the server
where the first object is (if it is the main remote
server, it is reusing the old connection, if not, it opens
a new connection after closing the other one.) and
requests the robots.txt file. If it exists the server will
send it to the client. It does this for each server. Note
that in our simulation, none of the servers had a
robots.txt file.

CAIA Technical Report 040227B February 2004 page 3 of 7

Figure 3 Snapshot of the tool : Simulation part

Figure 2 Snapshot of the tool : Population part

3. The client will then connect to the server again in the
same order to request each file linked to the main
document. Depending on the argument of wget, it
will either only ask for the children of this
document(which is all the objects needed to display
the html page), or it will also request for the linked
html pages. In our simulation we will only use the
first case. That is,we want to know how long it takes
to download on page with all its correspondent
objects (images, etc..) only.

When requesting the objects of the page, if one of
these objects is an embedded object that is located
maybe on another server, the client will close the
connection to the main server and create a new
connection to the second server and
request/download the object. Then it will reconnect
to the first server if it has other objects to download
from this server.

4. All those connections and re-connections obviously
add unwanted time to the process. This is why the
web page structure is really important and can add a
lot of unnecessary time if it is badly written.

B. The delay's impact

The delay from the client to the servers has an
obvious impact on the download time of any web page.
In Figure 5, we simulated a document with the following
characteristics:

i. Non-cachable document,

ii. 5 objects of same size (64B),

iii. All objects are cachable

The simulation shows the difference of time between
an inverted capacity network and an actual network
where the delay of the cache is varied from 1 to 150ms
and the delay to the server is set to 200ms.

The first line is the download time of the inverted
network and the other ones are the download times for a
traditional network where the delay to the cache varies
from 1 to 150ms.

In Figure 6, we simulated a document with the
following characteristics:

iv. Non-cachable document,

v. 5 objects of same size (64B),

vi. 80% (4) of the objects are cachable,

vii.The order of those objects is reversed which
means that the cachable objects are all coming
first then the non cachable ones.

As you can see, the download time for an inverted
network is a bit shorter than in a real network. This
difference occurs because the cache server is located at 1
to 150 ms for the real network case and at 0ms for the
inverted network case. The conclusions are obviously
that the inverted capacity network has a faster download
process.

It is also interesting to view the actual time we gain
from changing the network from traditional to inverted.
Figure 7 and Figure 8 show the percentage of increase of
time for the same document as in Figure 5 and Figure 6
respectively. For example in Figure 7, the download
time is speed up by a factor of three on an inverted

CAIA Technical Report 040227B February 2004 page 4 of 7

Figure 6 Cumulative relative frequency of the download time
Figure 4 Wget sequence diagram when downloading a non-cachable

document with 5 objects, 4 cachable in an ordered and mixed sequence

[3]

of cache

Connect to cache

Request and download
object #4

Connect to cache

Request and download
object #3

Request and donwload
object #2

Request and download
object #1

Request robots .txt
of remote
Request robots.txt
of cache

Request and download
object #1

Connect to cache

Request and donwload
object #2

Request and download
object #5

Ordered
 order

Mixed
 order

d
o
w

n
lo

ad
m

ai
n
 d

o
cu

m
en

t
C

o
n
n
ec

ti
o
n
 s

et
u
p
 a

n
d

Request robots .txt
of remote

Request and download
[4]

[5]

[1]

[2]

[3]

Connect to remote

Request

Download main page

Connect to cache

Connect to remote

Connect to remote

Request

Download main page

Connect to cache

Connect to remote

Request and download
object #3

object #5

Request and download
object #4

Client Server Client Server

[1]

[2]

[3]

[4]

[5]

O
b
je

ct
s

d
o
w

n
lo

ad
R

o
b
o
tx

 s
et

u
p

[1]

[2]Request robots.txt

 0

 20

 40

 60

 80

 100

 1500 2000 2500 3000 3500 4000

%

Download time in ms

CRF of a non cachable document with 5 objects, 4 cachable, reversed order

inverted, delay=(200:0)
traditional, delay=(200:5)

traditional, delay=(200:30)
traditional, delay=(200:100)
traditional, delay=(200:150)

Figure 5 Cumulative relative frequency of the download time

 0

 20

 40

 60

 80

 100

 500 1000 1500 2000 2500 3000 3500

%

Download time in ms

CRF of a non cachable document with 5 objects, all cachable

inverted, delay=(200:0)
traditional, delay=(200:5)

traditional, delay=(200:30)
traditional, delay=(200:100)
traditional, delay=(200:150)

network, compared to a traditional network with a delay
to the cache server set to 100ms.

Note that when the client loads an object, it first
needs to make a connection to the server, then a request,
then finally downloads the page. Thus the download
time and the delay are not a one to one correspondence.

Figure 9 shows roughly the total download time
computation for the document simulated on Figure 5.

The difference between the inverted network and the
real network is thus:

The connection and request of an object depends
linearly on the delay. The download time of an object
depends of the delay but also from the file size.

C. The web content impact

As you can see in Figure 4, the order of the objects is
relevant to the download time. The process between the
ordered and mixed version is not the same, even if the
number of objects is the same. This is due to the fact that
the client has to connect to every new server it
encounters and it doesn't keep the old connections. Thus,
if the objects are not grouped per location, the client will
have to reconnect twice to the same server.

Figure 11 shows the cumulative relative frequency of
the download time of the same document as in Figure 6
but where we tested each possible order and at a delay of
200 ms to the remote server and 100ms to the cache
server (0 ms if it is an inverted network):

4. ordered: the non-cachable objects first then the
cachable ones

5. reversed: the cachable ones first then the non-
cachable

6. mixed: no particular order, cachable and non-
cachable are mixed.

The ordered, reversed and mixed version of the
inverted network simulation are all pretty close to each
other (first line). The ordered and reversed version of a
real network or also close (second line) and the mixed
version has a longer download time (third line).

Table 1 shows the average download time in us for
the same test. As you can see the ordered and reversed
have almost the same time, the difference is of the order
of 3-4ms for an inverted network and 50us for an
traditional network. Why? Well if you have a look at

CAIA Technical Report 040227B February 2004 page 5 of 7

A = remote server , B = cache server

 connection to A= c(A),

 request for any file to A = r(A),

 download of file from A = d(A,file),

 d_time ~= c(A) + r(A) + d(A,main page) [download main doc]

 + c(B) + r(B) +r(A) [get robots.txt]

 + c(B) +5*[r(B) + d(B,object)] [get objects]

= c(A) + 2r(A) + d(A,main page) + 2c(B) + 5d(B,object) +6r(B)

Figure 9 Download time computation

B1 =real network cache server ,

B2 = inverted network cache server,

difference = [2c(B1) + 6r(B1) + 5d(B1,object)]

 - [2c(B2) + 6r(B2) +5d(B2,object)]

Figure 10 Difference in the download time computation

Figure 11 Difference in the download time computation

 0

 20

 40

 60

 80

 100

 1000 1500 2000 2500 3000 3500 4000

%

Download time in ms

CRF of a non cachable document with 5 objects, 4 cachable, all possible orders

ordered, inverted, delay=(200:0)
ordered, traditional, delay=(200:100)

reversed, inverted, delay=(200:0)
reversed, traditional, delay=(200:100)

mixed, inverted, delay=(200:0)
mixed, traditional, delay=(200:100)

Table 1 Average download time in us

Inverted network Traditional network

Ordered 2021553.38 3417794.25

Reversed 2025243.88 3417845.25

Mixed 2020838.75 3616336.5

Figure 7 Percentage increase of inverted speed up versus traditionalfor a non-
cachable document with 5 objects, all cachable

 100

 150

 200

 250

 300

 350

 400

 0 20 40 60 80 100 120 140 160

P
er

ce
nt

ag
e

in
cr

ea
se

 o
f i

nv
er

te
d

vs
 tr

ad
iti

on
al

Delay to the cache in ms

Speed up graph

document_2_non-cachable_5_5_o_64.html

Figure 8 Percentage increase for a non-cachable document with 5 objects, 4
cachable, reverse order

 100

 110

 120

 130

 140

 150

 160

 170

 0 20 40 60 80 100

P
er

ce
nt

ag
e

in
cr

ea
se

 o
f i

nv
er

te
d

vs
 tr

ad
iti

on
al

Delay to the cache in ms

Speed up graph

document_2_non-cachable_5_4_r_64.html

Figure 4, the reversed order will have exactly the same
procedure but in a different order than in the ordered
version. The number of connections to remote and cache
are the same, and the requests and downloads too.

For the mixed case, in Figure 4 you can see that 2
cachable objects from the cache server are loaded, then
one from the remote (non-cachable object) then the two
last cachable objects from the cache. Thus you have one
more connection to the cache than in the ordered
version. In an inverted network, the connection to the
cache is almost null since the delay to it is 0ms, but in
the traditional network, the connection time to the cache
is relevant since its delay is high (100ms). That is why
the average download time of a mixed sequence
document in an inverted network is almost the same than
in an ordered sequence (4 ms difference which is
irrelevant when the delay to the server is 200ms), and in
a traditional network, the difference from ordered to
mixed version is high (around 200 ms).

Figure 12 shows the speed-up gained from changing
the network from traditional to inverted. It is interesting
to note that the mixed version has a faster speed up than
in other orders. From Figure 4, it is clear that the
download of the mixed order page needs to do one more
connection to the cache than in the other orders. Since in
an inverted network this connection is almost null, the
difference of download time is bigger, since in a
traditional network, we will loose some time to connect
to the cache.

Thus, what have we learned from all this? First a
good web authors and web masters should be aware of
cachability. Caches can help your Web site to load
faster, and gets rid of some traffic load on your server
and Internet link. But from our results on the download
tool (here we used wget), the order is also relevant. But
this depends whether or not your tool keeps the
connections alive (multiple connection alive) or not. We
found that a mixed order looses a lot of time in the
connection process, but if we implement an inverted
network, this time lost will be irrelevant.

As a final plot, Figure 13 shows the speed up of the
download time of a non-cachable document with 30
objects, and where the objects either are all cachable, all
non-cachable or 80% cachable. The simulation is
conducted with a delay of 50ms to the remote server and

from 1 to 30ms to the cache server on the real network
and of 0ms for the cache server on the inverted network.

This shows exactly what are the parameters who will
be the most influenced by a change of network
architecture. As you can see, a document with all its
objects cachable will be more advantaged by an inverted
capacity network (higher increase in speed) because all
the objects will be closer to the client in an inverted
network than in a traditional network. The document
which will the less be influenced by a change will be a
document with no cachable objects at all. All these
objects would be stored on the remote server and a
change of bandwidth from the client to the caches would
not speed up the download at all.

IV.DOWNLOAD

The SWISS tool can be downloaded from the CAIA
server [6].

V. CONCLUSION
We build a tool that simulates any kind of Internet

architecture. The main goal of this tool is to simulate an
inverted capacity network and compare it to the real
network. The main concern here is the download time of
a web page requested by a virtual client to a virtual
server. The simulation also used the concept of caches
and can simulate the caching process.

This report shows some preliminary results on
several simulation, and mainly shows the capacities of
the tool. Several different simulations can be done that
are not shown in this report, but this is left to future
users who want to simulate specific tasks.

An inverted capacity network has two main
advantages: the first one is the decrease in download
time which we can compute with the tool, and the
second one is the decrease in traffic load because most
of the web pages would be accessed directly from home'
caches with a high storage capacity and thus a minimum
of traffic will actually go through the outside network.

In a future work, the goal will be to add more
specifications to the tool, so that we can also analyse the
traffic load and simulate traffic burst and so on.

CAIA Technical Report 040227B February 2004 page 6 of 7

Figure 12 Difference in the download time computation

Figure 13 Cumulative relative frequency of the download time

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0 5 10 15 20 25 30

P
er

ce
nt

ag
e

in
cr

ea
se

 o
f t

ra
di

tio
na

l v
s

in
ve

rt
ed

Delay to cache in ms

Percentage increase for a 50 ms delay to the remote server

document_2_non-cachable_30_30_o_64.html
document_2_non-cachable_30_0_o_64.html

document_2_non-cachable_30_24_o_64.html
document_2_non-cachable_30_24_r_64.html

document_2_non-cachable_30_24_m_64.html

 100

 110

 120

 130

 140

 150

 160

 170

 180

 0 20 40 60 80 100

P
er

ce
nt

ag
e

in
cr

ea
se

 o
f i

nv
er

te
d

vs
 tr

ad
iti

on
al

Delay to the cache in ms

Speed up graph

document_2_non-cachable_5_4_o_64.html
document_2_non-cachable_5_4_r_64.html

document_2_non-cachable_5_4_m_64.html

ACKNOWLEDGMENTS

Special thanks to Lawrence Stewart without whom
this report wouldn't have such wonderful plots.

REFERENCES

[1] L.Rizzo "Dummynet", July 2002,
http://info.iet.unipi.it/~luigi/ip_dummynet

[2] "GNU Wget", October 2003,
http://www.gnu.org/software/wget/wget.html

[3] G.Armitage, "Maximising Student Exposure to Unix Networking using
FreeBSD Virtual Hosts", Center for Advanced Internet Architecture,

Swinburne University of Technology, March 2003,
http://caia.swin.edu.au/reports/030320A/CAIA-TR-030320A.pdf

[4] W.Vanhonacker, "Evaluation of the FreeBSD dummynet network
performance simulation tool on a Pentium 4-based Ethernet Bridge",
Center for Advanced Internet Architecture, Swinburne University of
Technology, December 2003,
http://caia.swin.edu.au/reports/031202A/CAIA-TR-031202A.pdf

[5] W.Vanhonacker, "Characterizing Web Content", Center for Advanced
Internet Architecture, Swinburne University of Technology, February
2004, http://caia.swin.edu.au/reports/040227A/CAIA-TR-040227A .pdf

[6] "Simple web inverted system simultion tool", Center for Advanced
Internet Architecture, Swinburne University of Technology, February
2004, http://caia.swin.edu.au/ice/tools/swiss

CAIA Technical Report 040227B February 2004 page 7 of 7

