
Requirements for a Generic MPEG-1 Cipher to
Function in an Existing Streaming Server

Environment

Jason But
Centre for Advanced Internet Architectures. Technical Report 040426A

Swinburne University of Technology
Melbourne, Australia

jbut@swin.edu.au

Abstract-Copyright Protection is one of the many aspects of
implementing a commercially successful video streaming
solution. Copyright protection should be implemented using
both passive schemes – such as watermarking – and active
schemes – such as encryption. While some algorithms for
encryption of video have been proposed, they are in the main
unsuitable for implementation in a streaming video
environment. In this paper I describe a set of requirements that
an MPEG-1 cipher must possess in order to function in a
distributed streaming server environment using existing
streaming server products and technologies.

Keywords- MPEG Encryption, Streaming Video, Video-on-
Demand, Copyright Protection

I.     INTRODUCTION

Streaming of high-quality video over the Internet has
not progressed far beyond the trial stages. While there
are many technical limitations on a working
implementation, there are also non-technical reasons
why a commercial video streaming application will not
be successful.

Copyright protection is one such issue that must be
addressed. Copyright owners will not entrust their
content to a video streaming implementation that cannot
protect the content that it delivers. Online video
delivery systems will live or die by their patronage, and
consumers will only use a system if it offers content that
they find “interesting”. The more “interesting” the
content, the more likely the consumer will pay to access
it [1, 2].

Commercial reality means that the Copyright on
“interesting” content is more valuable and its protection
more important. This allows us to make the following
statement.

Consumers will not use a video streaming
service unless “interesting” contents is made
available, but content owners will not make this
material available unless their Copyright is
protected.
Copyright protection of online content is a complex

issue and involves not only the protection of content
against theft, but also the guarantee of payment and
secure money transfers. The scope of this paper does

not extend to secure monetary exchange with regard to
purchase of viewing rights on content [1-3].

Protection of content against theft can be
accomplished using two techniques. The first,
Watermarking, is a passive form of protection, stolen
watermarked content can still be freely viewed.
However, once theft is detected, the stolen content can
be checked to determine its original source and to aid in
prosecution [4, 5].

The second technique is active protection through the
form of encryption. In this case the content is modified
such that it cannot be viewed unless the key to
decryption is known. A complete system would involve
secure delivery of the key upon completion of payment
for access [1, 2].

This paper is concerned with the requirements for an
MPEG-1 cipher that will allow the encrypted stream to
be installed on and delivered from existing streaming
server implementation.

II.    WHY BE COMPATIBLE WITH EXISTING STREAMING SERVERS?
An option that is available is for a streaming server

developer to implement a cipher that is unique to their
product. Indeed, some may see this as a means to
differentiate their product from the competition.
However there are a number of reasons why this is not a
good idea.

A. Not Encryption Experts
Implementing a streaming server is a complex

procedure. It involves the complex management of
available disk bandwidth, memory bandwidth and
network bandwidth in order to maximise the number of
concurrent streams that can be delivered. Add the
complexity of supporting indexed and high-speed
playback modes and the development of a streaming
video server is not an easy task [6-8].

Streaming server developers must be good software
engineers with a great deal of experience in managing
limited resources and concurrent programming
techniques. They do not, however, need to be experts in
development and implementation of ciphers.

Furthermore, should the cipher be implemented by
the streaming server developers, they will also be

CAIA Technical Report 040426A April 2004 page 1 of 8



responsible for maintaining the software, as well as
developing and maintaining an encrypted video
playback application for clients to use.

B. Security and Scalability
If server developers use a cipher which is unique to

their server, it is likely to be implemented such that
encryption occurs in real-time as the content is being
delivered to the consumer over the network. This
approach has flaws in both security and scalability.

If video is encrypted in real-time, it will be stored on
the server in plaintext form. This will make the server
itself a target for attack. Any attack which renders the
server open to an outside interest will mean that all
content on that server is vulnerable. The more content
stored on the server, the more tempting it is as a target.

Further, real-time encryption of streaming video is
CPU intensive. Encryption of a small number of
streams is not an issue, but CPU and memory
requirements increase with the number of concurrent
streams. This requires not only further resource
management in a scenario where resources are already
scarce, but places further limitations on the maximum
number of concurrent streams that can be supported by a
streaming server.

C. Minimising Competition
It may be considered that allowing streaming server

developers to implement their own encryption solution
will increase competition between suppliers. However,
this will actually serve to minimise competition.
Competition would exist only while a service provider is
yet to decide which server product to use, once the
decision is made, the server developer would have a
monopoly with that service provider.

If the developer stopped upgrading their systems, the
service provider would either have to stay with old
technology or move to a different platform.
Implementations that are standardised across platforms
ensure that a service provider will always find
competition amongst developers.

The standards should not be limited in how data is
actually transmitted over the network (standardising
playback applications to function with all servers), but
also on the cipher used to encrypt the data. A standard
cipher, where the encrypted bitstream can be installed
and streamed from different server platforms, will
maximise the competition between server developers.

III.    DISTRIBUTED STREAMING SERVERS

A distributed server arrangement minimises the
network resources required to stream video, offering a
greater number of concurrent streams to a greater
number of consumers. In a distributed server
arrangement, video content would be cached at a local
streaming server where it could be delivered to a number
of local viewers [8-11].

With competition between server developers, it is
possible (and probably desirable) that each streaming
server in the server network is running a different

platform. This adds credence to the argument that an
MPEG-1 cipher for streaming video should be
compatible with a range of streaming servers [2, 10, 11].

Ensuring that the video is encrypted prior to being
installed on the distributed server becomes more
important if we consider a multi-party distributed server
scenario, where the streaming server network is owned
and operated by a number of companies working
together to provide a common streaming video service
to a large area. In this environment, there is more
delivery of content to untrusted persons and a greater
potential for theft [2, 11].

Copyright protection in a distributed server
environment would function as shown in Figure 1. The
encrypted (and watermarked) content is made freely
available by the content owner. Content is delivered
over the network and cached at a local streaming server
to the eventual client. The consumer requests access to
the content and purchases the decryption key from the
content owner. The consumer can then begin to stream
the encrypted video from the local server and decrypt it
using their purchased key.

IV.    IMPLEMENTATION OF PLAYBACK MODES ON STREAMING

SERVERS

Before we can begin to design a cipher that functions
correctly with a range of existing streaming server
products, it is necessary to understand how these
existing products function.

A streaming server offers a more complex
application space than a basic data server such as a
World Wide Web (WWW) or file server. This is due to
a client being able to interact with the video server to
control aspects of the media stream being requested [7].

Controls available to the client often emulate that
available to a user directly operating playback of a video
stored on a DVD, whereby they can pause and
recommence playback, jump to random points within
the video (index) and perform playback at both high and
low speeds [12].

Most streaming video servers offer the capability of
pausing and recommencing playback, as well as the
option of indexing to a random point within the video
stream. On the other hand, high-speed playback
functionality is only provided by some streaming video
server implementations, while slow-speed playback is
generally not offered at all.

Implementation of different playback modes increase
the complexity of the streaming server. While the CPU
processing load of streaming video is not high, the
complexity arises from managing the available disk,
memory and network bandwidths. Streaming video at a
constant rate (standard, paused and indexed playback) is
easier than co-ordinating system management when
streaming must also occur at different rates (during
different speed playback modes) [7].

One common factor is that if indexed playback is
implemented – as is the case in most server products –
then the server must decode the installed video bitstream

CAIA Technical Report 040426A April 2004 page 2 of 8



to some degree in order to extract timestamps to
implement this functionality.

Also common to streaming video is that the bitstream
received at the client must be passed through a standard
MPEG-1 decoder for playback. This means that if the
server streams the data in a proprietary format, the
original MPEG-1 bitstream must be reconstructed at the
client prior to decoding and playback [9].

A. Constant BitRate Streaming
There are many different approaches to streaming

video over an IP network, in general, it is only necessary
that the MPEG-1 bitstream is somehow delivered to the
end client, which then reconstructs the bitstream before
passing it to an MPEG-1 decoder for playback [6].

MPEG-1 video is encoded at a variable bitrate, some
frames are encoded using more bits that others, meaning
that some segments of video are of unequal size than

other segments of the same length [13, 14]. Streaming
of stored video is rarely performed at a variable rate.
Variable rate streaming is suitable for live video feeds –
particular live interactive feeds such as video
conferencing. In this instance, streaming data over the
network as it is encoded minimises the transmission
delay from source to destination and provides a more
responsive interactive experience [9].

When streaming from a stored source, data is
generally transmitted at a constant bit rate being equal to
the average bitrate of the encoded bitstream (eg.
Mediabase, Apple Quicktime, Microsoft NetShow
Theatre). The data is then provided to the decoder at the
required variable bitrate from a buffer at the client end,
see Figure 2 (note that the graphs are for illustrative
purposes only). This introduces a greater delay from the
moment data leaves the server to when it is decoded.

CAIA Technical Report 040426A April 2004 page 3 of 8

Figure 1: Content Protection in a Distributed Server Environment

Figure 2: Constant Bitrate MPEG Streaming

Content Server

Content Flow

ISP/Local
Network

Client

Cache/Distributed
Server

Content Owner
Network Internet

Content and Copyright
Management

Content Management



Actual transmission time is not as important as the
variation in transmission time, or jitter [9].

The buffer at the client is used to minimise the
effects of jitter, as long as enough data is stored in the
buffer, playback can continue even if some data arrives
late at the client. Playback only suffers if the data
arrives so late that all data in the buffer has been
decoded and the buffer is empty. The level of
acceptable network jitter can be increased by increasing
the size of the buffer with the cost being an increased
total transmission time to the decoder and subsequent
degraded response time to interactive commands [9].

B. Standard Playback
Video streaming includes the reassembly of data at

the client into a valid MPEG-1 bitstream for decoding
and playback purposes. If we consider the MPEG-1
bitstream format, or more formally the MPEG-1 System
Stream, in more detail (see Figure 3), we can see that the
System Stream format allows encapsulation of one or
more substreams, known as the MPEG-1 Video Stream
and MPEG-1 Audio Stream [13, 14].

The MPEG-1 Video Stream defines a video sequence
while the MPEG-1 Audio Stream defines audio data to
be played back. A single System Stream can contain
multiple (up to 16) different Video Streams and (up to
32) Audio Streams. Obviously, only one Video and one
Audio Stream is selected for playback at any one time,
the other streams encoded within the System Stream
would be ignored [13, 14].

Streaming video can be performed in a number of
ways:

� We can stream the System Stream as is, when the
data is received at the client it is passed directly to an
MPEG-1 decoder for playback [9]. As per the SGI

Mediabase and Microsoft NetShow Theatre
streaming servers.

� The server can select the encoded Video and Audio
Stream from the System Stream and stream these two
bitstreams separately. At the client, a new System
Stream is constructed containing these two sub-
streams and passed to the MPEG-1 decoder for
playback [9].

� The server selects the encoded Video and Audio
Streams from the System Stream which are then
streamed separately. At the client, the Video Stream
is passed directly to an MPEG-1 Video decoder
while the Audio Stream is passed directly to an
MPEG-1 Audio decoder for playback [9]. As per the
Apple Quicktime Streaming Server.
Each of these approaches is a viable one for a

streaming server to utilise. The first approach simplifies
server implementation as less processing is performed
on the stored bitstream, however this load can be
minimised by extracting the sub-streams prior to
installation on the server. This approach also minimises
complexity in timing and delivering data packets onto
the network. The primary cost is when the original
bitstream actually does consist of multiple Video and
Audio Streams, in this case more network bandwidth
than necessary is used in transmitting data that will not
be used by the client [9].

The second approach can potentially save network
bandwidth by only transmitting the Video and Audio
Streams that the user selects. Some effort is expended
by the client in reconstructing a valid System Stream to
pass to a decoder.

The final approach distributes the effort of decoding.
The decoding and playback of the System Stream is
performed by the server, extracting the selected Video
and Audio Streams and delivering these over the

CAIA Technical Report 040426A April 2004 page 4 of 8

Figure 3: MPEG-1 System Stream Definition

Pack ISO 11172 End CodePackPack

Pack Header System Header* PacketPacket Packet

Packet Header Data Byte Data ByteData Byte Data Byte

Pack Layer

Packet Layer

N Bytes where N is defined in the Packet Header

ISO 11172 Layer

ISO 11172 System Stream

Pack

* System Header is required in 
the first pack of the ISO 11172 
System Stream



network. Decoding is completed at the client by
separate MPEG-1 Video and Audio decoders. Load at
the server can be minimised by decoding the System
Stream and extracting the Video and Audio Streams
during installation of the content.

The exact size of individual IP datagrams and the
time intervals at which these packets are placed on the
network vary from implementation to implementation.

C. Pause
Pausing playback of a video stream is usually a

simple matter of following a series of steps:
� Send a message to the server to stop streaming data,

the server sends no more packets of data but
remembers its position in the stored bitstream so that
it can recommence streaming.

� The client decoder stops processing data from the
buffer at the current frame being displayed. Any data
remaining in the buffer is used once the user decides
to recommence playback.

� Any packets that were in transit before the server
received the message to stop streaming will arrive at
the client. This data is stored in the buffer to be used
once the user decides to recommence playback.
When playback resumes, the server is instructed to

start sending data again, this continues from the next
block of data in the bitstream from the last packet sent.
When this arrives at the client it can be stored in the
buffer immediately after the last packet that arrived

when playback was initially paused. The client decoder
can also continue processing data from the buffer [9].

D. Indexed Playback
Indexed playback is a feature provided on nearly all

streaming video servers. It allows the user to randomly
select the current playback position within the installed
bitstream. This allows quick navigation through the
content, especially if the timestamp of required scene is
known.

Implementation of Indexed playback when playing
back an asset stored locally on disk is basic. The
approximate position in the bitstream is calculated based
on both the timestamp and the average encoded bitrate.
We then seek to this position in the file and start
processing the data, looking for some System Stream
information indicating that we may recommence
playback [15].

Indexed playback of streamed video over a network
is slightly more complex. The process of seeking for a
suitable starting point is typically performed by the
server, which then begins streaming only the data to be
decoded to the client [12, 16].

Client playback applications typically reset their
decoder during an indexed jump, treating the restart in
data flow as a new bitstream to be decoded and
displayed. As such, the newly received bitstream must
conform to the MPEG-1 bitstream standards.

This task cannot be performed by simply streaming
data over the network from a different point in the file

CAIA Technical Report 040426A April 2004 page 5 of 8

Figure 4: MPEG-1 Video Stream Definition

Sequence Header GOP Sequence End CodeSequence HeaderGOP GOP

GOP Header Picture PicturePicture Picture

Picture Header Slice SliceSlice Slice

Slice Header Macroblock MacroblockMacroblock Macroblock

Macroblock Header block0 End of Macroblockblock1 block2 block3 Block4 block5

Run Length DCT Coefficients

Group of Pictures Layer

Picture Layer

Slice Layer

Macroblock Layer

Block Layer

Sequence Layer

MPEG-1 Video Stream

GOP



stored at the server. Instead, the server must execute
some decoding of the MPEG-1 bitstream. The purpose
of this decoding is to locate a valid starting point from
which decoding can start [12, 16].

The definition of the MPEG-1 Video Stream, see
Figure 4, shows that decoding can commence from the
start of any GOP in the bitstream (the Sequence Header
from the start of the original bitstream can be repeated)
[13, 14]. This necessarily means decoding the bitstream
to locate timestamp information as well as the location
of the start of the nearest GOP to the selected indexed
timestamp.

Once this data stream start point has been
determined, the server can recommence standard
streaming from this point in the stored bitstream. In
order to provide indexed playback functionality, the
streaming server must be able to locate individual GOPs
and their timestamps within the stored bitstream.

Some servers, such as Apple QuickTime require that
the indexing information be pre-processed through a
process Apple calls “hinting”. Others, such as
Mediabase and NetShow Theatre will perform this task
in real time.

E. High-Speed Playback
High-speed playback modes, in both forward and

reverse directions, is a feature that is not provided by all
streaming server implementations (eg. The Apple
Quicktime Server does not support the high-speed
playback modes). As a feature, it is complex to
implement, and can consume server resources. The
solution is not to stream the original bitstream at a faster
rate as this consumes disk, memory and network
bandwidth at an increased rate, to provide a series of
images that are only viewed at high-speed with a view to
locate a particular point in the media [17, 18].

Instead, implementation of high-speed playback is
performed in a way to conserve resource usage. The
typical approach used is to extract particular frames
from the original bitstream and transmit only these
frames over the network for the client to decode. In this
way, a smaller portion of the bitstream is transmitted,
decreasing resource usage and not impacting on the
number of supported concurrent streams.

Within the video stream, see Figure 4, a GOP
encodes a series of frames, the frames themselves are
encoded at the Picture Layer, where each Picture makes
up a single frame in the video sequence. These frames
cannot be extracted at random, in order to achieve the
compression ratio that it does, video frames are encoded
as being derived from both previous and future frames in
the sequence [14].

The video image itself is made up of a number of
frame types, I-Frames (which can be decoded and
displayed independently of other frames), P-Frames
(which require decoding a previous I or P-Frame prior to
decoding) and B-Frames (which require decoding a
previous I or P-Frame as well as a following I or P-
Frame prior to decoding) [14].

Of these frame types, only I-Frames can be
independently extracted from the original bitstream and
be decoded for display. The reason that I-Frames are
used less often is that they consume the largest number
of bits in the bitstream.

A typical high-speed playback mode will be
implemented by extracting a sequence of I-Frames from
the original bitstream and delivering these frames only
to the client. These frames can be decoded and
displayed in any order, allowing implementation of both
forward and reverse playback modes [16, 18].

However, the MPEG-1 decoder cannot directly
decode a series of I-Frames, only an bitstream
conforming to the MPEG-1 Video Stream format [14].
As such, the server must reconstruct a new bitstream
from the extracted I-Frames to deliver to the client for
decoding and display. The procedure is shown in Figure
5.

As for indexed playback, the original Sequence
Header at the beginning of the bitstream can always be
repeated to construct the high-speed bitstream. A new
sequence of GOPs can be constructed from the existing
GOP Headers and the first Picture within the respective
GOP.

The GOP Header does not indicate the number of
pictures within the GOP and thus Pictures can be deleted
from the data stream. The first Picture within the GOP
is an I-Frame so that subsequent Pictures can be
correctly decoded [13, 14].

CAIA Technical Report 040426A April 2004 page 6 of 8

Figure 5: Generating a High-Speed Playback Bitstream

GOP

Header Picture
B-Frame

Picture
P-Frame

Picture
I-Frame

Picture
B-Frame

GOP

Header Picture
B-Frame

Picture
I-Frame

GOP

Header Picture
I-Frame

GOP

Header Picture
I-Frame

Other GOPS



This procedure will construct a new, valid, MPEG-1
video bitstream that consists of only the first I-Frame
stored in each GOP. While not enforced by the MPEG-
1 standard, a GOP typically contains about 12 frames,
resulting a sequence consisting of only every twelfth
frame [14].

Further, a server will typically only deliver the video
stream during high-speed playback rather than
constructing a System Stream. This is because audio is
not required during high-speed playback. A server can
optimise its implementation by extracting the high-speed
bitstreams upon installation of content – in this way the
data is already assembled for delivery should a high-
speed playback mode be selected by the client [18].

Indexed high-speed playback is also available if
high-speed modes are provided. This involves indexing
into the high-speed video bitstream to the specified
timestamps and commencing playback from there [18].

To provide high-speed playback functionality, the
streaming server must be able to locate and extract
individual I-Frames and GOP Headers from the stored
bitstream. These data blocks will be reassembled to
form a new high-speed playback MPEG-1 video stream
to be delivered in these modes. To provide indexed
high-speed playback, the server must be able to locate
the timestamps within this new high-speed playback
bitstream.

Some servers, such as Mediabase pre-process the
installed bitstream to generate the high-speed bitstreams
during the installation process. In this way, the high-
speed bitstream is always available. Other servers, such
as NetShow Theatre perform this task in real time.

V.    CIPHER REQUIREMENTS

The aim is to have an MPEG-1 Cipher that is
compatible with a range of existing streaming video
products. In order for this to occur, it must meet the
following requirements:
1. The encrypted bitstream must install onto an

existing streaming video server. Most streaming
servers will perform a partial decode of the content to
ensure that it conforms to the MPEG-1 bitstream
format. Meeting other requirements of supporting
indexed and high-speed playback modes should
ensure that this check is passed as well.

2. Servers that allow pausing during playback must
continue to provide this feature. Most servers will
allow the user to pause playback of the video stream.
This is often implemented by simply pausing and
restarting delivery of data but can also require a re-
index into the bitstream. The server must be able to
relocate the current playback position.

3. Pausing and resuming playback must be
supported during decryption and playback at the
client. The decryption module must be able to cope
with the data stream being delivered during a pause
in playback. This is not typically an issue if pause is
implemented through a basic stop and restart of data
delivery. If a restart is implemented via re-indexing
into the encrypted bitstream, the cipher must be able

to resynchronise the decryption process such that the
bitstream is correctly decrypted.

4. Servers that provide indexed playback must be
able to provide this feature with an encrypted
bitstream. Indexed playback by servers is provided
by commencing playback at a given timestamp in the
bitstream. To support this functionality, a server
must be able to locate the same timestamps within
the encrypted bitstream.

5. Indexed playback, if provided by the server, must
be supported during decryption and playback at
the client. The decryption module must be able to
cope with the data stream being delivered during
indexed playback. The cipher must be able to
resynchronise decryption at any of the possible
indexation timestamps such that the bitstream is
correctly decrypted.

6. Servers that provide high-speed playback modes
must be able to provide this feature with an
encrypted bitstream. High-speed playback, if
implemented, is typically provided through the
extraction and delivery of separate I-Frames from the
original MPEG-1 bitstream. To support this
functionality, a server must be able to locate and
extract the encrypted I-Frames within the encrypted
bitstream.

7. High-speed playback modes, if provided by the
server, must be supported during decryption and
playback at the client. The decryption module must
be able to cope with the data stream being delivered
in the high-speed playback modes. The cipher must
be able to resynchronise decryption at each I-Frame
delivered during high-speed playback such that the
bitstream is correctly decrypted.

8. The encrypted bitstream should be secure against
attack. This requirement is obvious. The point of
encrypting video is to protect it against theft.
Obtaining the encrypted bitstream is assumed to be
possible and therefore we must ensure that the cipher
makes it unfeasible to retrieve the plaintext bitstream
without purchase of the key.

VI.    DIGITAL RIGHTS MANAGEMENT

Digital Rights Management (DRM) encompasses the
entire Copyright protection argument [3]. MPEG-1
encryption, as discussed in this paper, forms a small
piece of the puzzle that is DRM. A complete solution
involves not only protection of content against theft
through encryption of data, but also an addressing of the
following issues:

� Watermarking (passive protection) to assist in
prosecution after theft has occurred [4, 5].

� Key Management, or the distribution of the
decryption key to those authorised to access the
content.

� Licensing issues. Specification of digital licenses
authorising the holder to certain privileges with
content [3]. Examples include – Is editing allowed?
Is copying allowed?  Restrictions on access dates?

CAIA Technical Report 040426A April 2004 page 7 of 8



� Distribution issues. How are distributors of content
allowed to access the content [2, 8, 11].

� Distribution of Monies. How do we ensure that
payment is actually made? How do we specify how
the costs of accessing digital content are spread
amongst all shareholders of that content? How can
this distribution be automated? [20, 21]
Encryption of digital video content fits into this

scenario as a means of actually protecting the content.  If
we enforce the aforementioned restrictions on the
cipher, it also answers a question of content distribution
– content is provided in encrypted format to all
distributors.

VII.    CONCLUSION 
Copyright protection of networked digital video is a

complex issue that encompasses a wide area with many
parts to address. This paper seeks to summarise the
requirements to a possible solution to one of these parts,
that of encryption of the video to safeguard it against
theft.

In an ideal situation, a streaming video service would
be implemented using a distributed server scenario. In
such a scenario, competition is maximised if encryption
of video is performed externally to the streaming video
implementation – the streaming server should be able to
stream content that is already encrypted and it should be
able to decrypted at the consumer. In this way, content
is in encrypted form at all stage while it is on the
network.

By developing an MPEG-1 cipher that is compatible
with a range of different streaming server products,
content protection can be implemented independantly of
any streaming digital video solution.

This paper describes how streaming servers transfer
video data over the network to the consumer and how
they provide functionality over and above simple video
delivery, such as indexed and high-speed playback
modes. By understanding how this functionality is
provided, it places restrictions on the design of a suitable
MPEG-1 cipher that can be used in existing streaming
video implementations.

Apart from the obvious requirement that the
encrypted bitstream should prove resistant to attack, the
other requirements of an ideal MPEG-1 cipher include:

� All streaming server products should accept the
encrypted bitstream for installation.

� The encrypted bitstream must be able to be streamed
from the server in all playback modes supported by
that server, standard, paused, indexed and high-
speed.

� The cipher must be able to resynchronise itself such
that the received bitstream at the client can always be
correctly decrypted and decoded for playback
purposes. This must be true in all supported
playback modes.

ACKNOWLEDGMENTS

This work in this paper has been developed as part of
my PhD studies at Monash University, Melbourne,
Australia.

Figures 3 and 4 have been drawn by the author but
modified from diagrams found in Mitchell et al [14].

REFERENCES

[1] Memon, N. and Wong, P. W., "Protecting Digital Media Content",
Communications of the ACM, vol. 41, no. 7, 1998, 35-43. 

[2] But, J., "Implementing Encrypted Streaming Video in a Distributed
Server Environment", Submitted to IEEE Multimedia, April 2004

[3] Lee, J., Hwang, S. O., Jeong, S-W., Yoon, K. S., Park, C. S. And Ryou,
J-C, "A DRM Framework for Distributing Digital Contents through the
Internet", ETRI Journal, vol. 25, no. 6, December 2003, pp 423-436

[4] Bao, F., Sun, Q., Hu, J., Deng, R. H. and Wu, J., "Copyright protection
through watermarking: towards tracing illegal users", The 6th IEEE
International Workshop on Intelligent Signal Processing and
Communications Systems (ISPACS'98), November

[5] Abdulaziz, N., "Digital Watermarking and Data Hiding in Multimedia",
PhD Thesis, Monash University

[6] Gemmell, J., Vin, H. M., Kandlur, D. D., Rangan, P. V. and Rowe, L. A.,
"Multimedia Storage Servers: A Tutorial", In: Computer, May 1995,
1995, 40-49.

[7] Ramarao, R. and Ramamoorthy, V., "Architectural Design of On-
Demand Video Delivery Systems: The Spatio-Temporal Storage
Allocation Problem", IEEE International Conference on Communications

[8] But, J. and Egan, G., "Designing a Scalable Video On Demand System",
International Conference on Communications, Circuits and Systems
(ICCCAS'02), pp. 559-565 

[9] Wu, D., Hou, Y. T., Zhu, W., Zhang, Y.-Q. and Peha, J. M., "Streaming
Video over the Internet: Approaches and Directions", In: IEEE
Transactions on Circuits and Systems for Video Technology, Vol. 11,
No. 3, 2001.

[10] Chan, S. and Tobagi, F., "Caching schemes for distributed video
services", IEEE International Conference on Communications (ICC'99),
1999.

[11] But, J. and Egan, G., "Designing an Affordable Scalable Video On
Demand System", 2nd ATcrc Telecommunications and Networking
Conference and Workshop, pp. 16-21

[12] Anderson, D. B., "A Proposed Method for Creating VCR Functions
using MPEG Streams", IEEE 12th International Conference on Data
Engineering, 1996, pp. 380-382

[13] ISO, "ISO/IEC 11172. Coding of moving pictures and associated audio
for digital storage media at up to about 1.5 Mbit/s", ITU, 1996

[14] Mitchell, J. L., Pennebaker, W. B., Fogg, C. E. and LeGall, D. J., MPEG
Video Compression Standard, Chapman & Hall ISBN 0-412-08771-5.

[15] Anderson, M., "VCR Quality Video at 1.5 Mbits/s", In: National
Communication Forum

[16] Lin, C.-W., Zhou, J., Youn, J. and Sun, M.-T. (2001) "MPEG Video
Streaming with VCR Functionality" IEEE Transactions on Circuits and
Systems for Video Technology, Vol. 11, No. 3, 2001, 415-425. 

[17] Chen, H. J., Krishnamurthy, A., Little, T. D. C. and Venkatesh, D. (1995)
"A Scalable Video-on-Demand Service for the Provision of VCR-like
Functions", In: 2nd International Conference on Multimedia Computing
and Systems, May 1995, pp. 65-72 

[18] Frimout, E. D., Biemond, J. and Lagendick, R. L. (1995) "Extraction of a
dedicated fast playback MPEG bit stream" Proceeding of the SPIE, Vol.
2501, 1995, 76-87. 

[19] Shanableh, T. and Ghanbari, M., "The Importance of Bi-Directionally
Predicted Pictures in Video Streaming", In: IEEE Transactions on
Circuits and Systems for Video Technology, Vol. 11, No. 3, 2001, 402-
414.

[20] Schneier, B., Applied Cryptography: Protocols, Algorithms, and Source
Code in C, John Wiley & Sons ISBN 0-471-11709-9.

[21] Aslam, T., "Protocols for E-Commerce", Dr. Dobbs Journal, Vol.
December, 1998, 52-58.

CAIA Technical Report 040426A April 2004 page 8 of 8


