

CAIA Technical Report 041123A November 2004 Page 1 of 55

Prototype Development for Secure Public Instant Messaging (IM)
At Work*

Nigel Williams, Joanne Ly†
Centre for Advanced Internet Architectures. Technical Report 041123A

Swinburne University of Technology
Melbourne, Australia

 {182329,182268}@swin.edu.au

Abstract – This report details the development of a secure
messaging add-on for use on public Instant Messaging (IM)
networks. It is a continuation of the project discussed in [25].
Due to sociopolitical and monetary reasons, the growth of secure
enterprise IM systems has not kept pace with the use of insecure
public IM systems. A solution to this problem is to develop a free
prototype that is able to secure communications over a public IM
network, using a set of guidelines for information security and
IM network compatibility. The prototype was able to
successfully integrate with a third party IM client and conduct
an encrypted session over the MSN Messenger Network. With
more development and testing the prototype could become a
viable option for use as a secure IM add-on.

Keywords – Instant Messaging, MSNP, OSCAR, encryption,
information security

TABLE OF CONTENTS
TABLE OF CONTENTS .. 1
TABLE OF FIGURES .. 1
TABLE OF TABLES .. 2
I. INTRODUCTION ... 3

A. BACKGROUND ... 3
B. MOTIVATION ... 3
C. CONTEXT OF USE... 3
D. OUTCOMES .. 4

II. OBJECTIVES AND SCOPE.. 5
A. OBJECTIVES... 5
B. SCOPE .. 5

III. MAJOR CONCEPTS .. 6
A. IM PROTOCOLS ... 6
B. CRYPTOGRAPHIC BASICS .. 6
C. CRYPTOGRAPHIC ALGORITHMS... 6
D. INFORMATION SECURITY... 7
E. KERCKHOFF’S PRINCIPLES .. 7

IV. CURRENT SOLUTIONS.. 8
A. CRYPTOHEAVEN ... 8
B. TOP SECRET MESSENGER (TSM).. 8
C. SECWAY SIMP PRO AND SIMPLITE.. 8

V. PROJECT DEVELOPMENT PROCESS.............................. 9
A. PROTOTYPE ASSESSMENT ... 9
B. PROTOTYPE DESIGN .. 9
C. PROTOTYPE TESTING...10

VI. INFORMATION SECURITY DESIGN PRINCIPLES...11
A. CONFIDENTIALITY...11
B. DATA INTEGRITY...13
C. AUTHENTICATION..13
D. NON-REPUDIATION..15
E. KEY ESTABLISHMENT AND MANAGEMENT.............................15

VII. INSTANT MESSAGING DESIGN PRINCIPLES..........17
A. IM PROTOCOL COMPATIBILITY AND PORTABILITY................17
B. LIMITING ADDITIONAL INFORMATION17

VIII. PROTOTYPE DESIGN..18
A. MESSAGE CAPTURE AND ENCRYPTION PROTOCOL18
B. KEY GENERATION, EXCHANGE AND AUTHENTICATION.........19

C. PROTOCOL PROCESSES IN DETAIL...20
IX. PROTOTYPE TESTING ..22

A. SOFTWARE DEMONSTRATION ...22
B. PERFORMANCE CONSIDERATIONS- BENCHMARKS24

X. DISCUSSION ..29
XI. RECOMMENDATIONS ...30
XII. CONCLUSION..31
XIII. REFERENCES...32
XIV. APPENDICES ..33

A. CRYPTOGRAPHIC PRIMITIVES..33
B. ADVANCED ENCRYPTION STANDARD (AES)..........................35
C. COLLISION ATTACKS...38
D. CIPHER BLOCK CHAINING (CBC)...39
E. INITIALISATION VECTOR (IV) GENERATION METHODS..........40
F. RSA ...41
G. KEYTOOL ..42
H. SYSTEM CLOCK GRANULARITY ..43
I. BENCHMARK TABLES OF RESULTS ...44
J. SELECTED PROTOTYPE SOURCE CODE46

TABLE OF FIGURES

FIGURE 1 - BASIC COMMUNICATION EXCHANGE6
FIGURE 2 - GENERIC ENCRYPTION SCENARIO ..6
FIGURE 3 - KEY ESTABLISHMENT PROCESS..15
FIGURE 4 - IM MESSAGE PAYLOAD..17
FIGURE 5 - KEY GENERATION AND EXCHANGE....................................19
FIGURE 6 – INTERFACING PROTOTYPE WITH TJMSN...........................20
FIGURE 7 - TJMSN CONVERSATION WINDOW.....................................20
FIGURE 8 - ACTIVATE ENCRYPTION..21
FIGURE 9 - ENCRYPTED MESSAGE EXCHANGE.....................................21
FIGURE 10 - END ENCRYPTED SESSION ..21
FIGURE 11 - ENCRYPTION MENU ..22
FIGURE 12 - ENTER KEYSTORE INFORMATION DIALOGUE22
FIGURE 13 - ENTER KEYSTORE ALIAS DIALOGUE23
FIGURE 14 - ENABLE ENCRYPTION SESSION DIALOGUE23
FIGURE 15 - ENCRYPTION DEACTIVATION MESSAGE...........................24
FIGURE 16 - CERTIFICATE ALIAS DIALOGUE..24
FIGURE 17 - CERTIFICATE STORAGE CONFIRMATION24
FIGURE 18 - AES TESTBENCH EXAMPLE ...25
FIGURE 19 - AVERAGE TIME FOR AES KEY GENERATION25
FIGURE 20 - AES ENCRYPTION WITH 58-BYTE STRING26
FIGURE 21 - AES ENCRYPTION WITH 108-BYTE STRING26
FIGURE 22 - AES DECRYPTION WITH 58-BYTE STRING26
FIGURE 23 - AES DECRYPTION WITH 108-BYTE STRING26
FIGURE 24 - RSA TESTBENCH EXAMPLE ...26
FIGURE 25 - AVERAGE TIME FOR RSA SIGNING..................................27
FIGURE 26 - AVERAGE TIME FOR RSA ENCRYPTION...........................27
FIGURE 27 - AVERAGE TIME FOR RSA DECRYPTION (PRIVATE KEY).27
FIGURE 28 - AVERAGE TIME FOR RSA MESSAGE VERIFICATION........27
FIGURE 29 - AVERAGE TIME FOR RSA DECRYPTION (PUBLIC KEY)...27
FIGURE 30 - UNKEYED CRYPTOGRAPHIC PRIMITIVES33
FIGURE 31 - SYMMETRIC KEY CRYPTOGRAPHIC PRIMITIVES33
FIGURE 32 - ASYMMETRIC KEY CRYPTOGRAPHIC PRIMITIVES............34
FIGURE 33 - ONE ROUND OF AES ..35
FIGURE 34 - S-BOX USED IN AES ENCRYPTION...................................37

*

This report was originally developed and submitted for 'HET556: Design & Development Project 2', Semester 2, 2004
†
The authors are undergraduate students in Engineering at Swinburne University of Technology

CAIA Technical Report 041123A November 2004 Page 2 of 55

FIGURE 35 - INVERSE S-BOX USED IN AES ENCRYPTION....................37
FIGURE 36 - CBC ENCRYPTION AND DECRYPTION..............................39
FIGURE 37 - CBC ENCRYPTION AND DECRYPTION FOR THE FIRST

CYCLE ..39

TABLE OF TABLES
TABLE 1 - COMMAND CODE FAMILIES ...18
TABLE 2 - SYSTEM PROPERTIES..25
TABLE 3 - KEY-BLOCK-ROUND COMBINATIONS36
TABLE 4 - SYSTEM CLOCK GRANULARITY...43

TABLE 5 - AES KEY GENERATION ...44
TABLE 6 - AES ENCRYPTION AND DECRYPTION OF 58-BYTE STRING .44
TABLE 7 - AES ENCRYPTION AND DECRYPTION OF 108-BYTE STRING44
TABLE 8 - AES ENCRYPTION AND DECRYPTION ADJUSTED FIGURES

(58-BYTE) ...44
TABLE 9 - AES ENCRYPTION AND DECRYPTION ADJUSTED FIGURES

(108-BYTE) ...44
TABLE 10 - RSA BENCHMARK RESULTS (500 LOOPS)45
TABLE 11 - RSA BENCHMARK RESULTS (ADJUSTED FIGURES)45

CAIA Technical Report 041123A November 2004 Page 3 of 55

I. INTRODUCTION
Instant Messaging (IM) is an Internet-based application

that allows for real-time communication between users as
well as providing functions such as file transfers and video
conferencing.

Once thought of as a time-wasting tool for sending

personal messages at work, IM has evolved into a more
practical application that provides an easy way to exchange
files and conduct spontaneous online meetings. This
evolution of IM applications has caused the IM industry to
see a rapid growth in the number of users in recent years.

IDC research found in 2003 that there were over 43

million users of public IM in the workplace [1]. This
number is indicative of how IM has involved from being a
“virtual water cooler” [1] to an alternative business
communication tool.

The major problem with IM usage in the workplace

however is that the IM programs used are insecure public
IM applications. A Group study conducted in 2003 found
that nearly 80 percent of instant messaging in workplaces
was done using public IM services.

A study conducted by AT&T Laboratories between

2000 and 2001 found that the majority of workplace IM
interactions were “complex, work-specific interactions”
[14]. This emphasises the need to make IM more secure if
it is to be used in the workplace.

A. Background
There are two types of IM applications available to

users: public and enterprise. Public applications are
downloadable off the Internet for free. They are the most
widely used type of IM application in both the home and
workplace. However, in the workplace, they pose a major
security risk to an organisation. This is mainly due to the
fact that the data that is exchanged over public IMs can be
intercepted and distributed. If the data intercepted was
sensitive, this could have a catastrophic effect on an
organisation.

Enterprise IM applications were developed to combat

the security issues that public IM applications posed on
organisations. Enterprise IM applications are not free and
must be purchased as with any proprietary software
package.

The initial aim of the project was to build a secure IM

application that could be used in the workplace. However,
after further investigation into the reasons why enterprise
solutions were not as commonly used as their public
counterparts, it was discovered that the issue was of a
sociopolitical nature than a technical one.

Looking at the employee and manger attitudes, the

following were some of the reasons deduced to explain why
enterprise IMs were not widely used [25]:

 Some managers did not see the purpose in

implementing IM at work
 It may be difficult for managers to find a solution to

deal with IM usage – should it be banned altogether or
if not, what kind of restrictions should be imposed?

 Some employees may resist being restricted to using
enterprise IMs as could cut off their ability to
communicate with people outside of work

 Companies may not have the monetary resources to
purchase an enterprise IM system

 Companies may not have any available IT resources to
manage the system

From this, it was decided that a more constructive

approach would be to try and make public IMs more secure
whilst they were still more predominately used than
enterprise IMs. To do this, the aim of the project changed to
make an encryption add-on in an attempt to secure public
IMs at work.

The next phase of the project was to develop a proof of

concept prototype using DES encryption for a Java-based,
open-source Microsoft® MSN Messenger (or simply, MSN)
IM client called TjMSN. The prototype proved that public
IMs could easily be made secure by using a simple add-on.

For this semester’s work, as the prototype was a simple

demonstration, it needed to be further developed to include
such information security objectives such as authentication,
data integrity and key management to become a more viable
solution. In addition to that, DES is an old encryption
algorithm that is succeeded by more efficient, newer
algorithms. Therefore, the algorithm was to be replaced
with one of the newer algorithms.

B. Motivation
Public IM applications are increasingly being used in

the workplace. The Telematica Institut in the Netherlands
conducted a study in 2004 to investigate how public IM
applications were adopted in the workplace [3]. The study
found that the usage of IM increased fourfold, in both users
and conversations, after the formal introduction of IM into
the workplace.

The increase in public IM usage and the lack of

management control induces security risks within the
workplace. The project motivation was to devise and
interim solution to the security risk whilst public IMs were
increasing in usage without any management control.

C. Context of Use

The context of use for which the prototype was
designed for was based on the last two points listed
previously as reasons why enterprise IMs were not
extensively used (lack of monetary funds and IT resources).
The following describe the context of use for the prototype:

 Small company (no more than 100 employees)

CAIA Technical Report 041123A November 2004 Page 4 of 55

 Lack of monetary funds to purchase enterprise IM
 Lack of IT resources to manage an enterprise IM

system
 Employees that see the benefits of using public IMs but

do not wish to jeopardise the company by having their
IM exchanges intercepted by adversaries

Therefore, the prototype needed to be free, secure, easy

to use and not take up too much IT resources.

D. Outcomes
The prototype was developed with two major design

focuses: information security principles (VI) and IM design
principles (VII). Information security principles are
concerned with how the information that is being exchange
is kept secure from eavesdroppers. This included the
application of cryptography to keep messages secret,
authenticate entities and implementation of a secure key
management exchange.

Considerations were also made in regards to the

context of use in which these information security principles
will be implemented. IMs function in real-time, so it was
imperative that the prototype did not slow down the
communication excessively. IMs also have a message
length limit (payload). This created a restriction on the
length of the encrypted text that was to be exchanged over
the communication channel. Thus, tradeoffs between
information security principles and IM design principles
were made to develop a secure add-on that would be
effective for an IM application.

Once the prototype was developed, it was tested in a

small network environment on different operating systems
and processors. The outcome of the tests found that the
prototype did not adversely affect the real-time attribute of
IMs when providing information security measures.

The cryptographic world is constantly evolving.

During the late stages of development, it was found that
some cryptographic primitives were being included in code
libraries that were more effective than the ones chosen for
the prototype. Therefore, it is recommended that the
prototype should be developed further before being
implemented in the “real world”.

CAIA Technical Report 041123A November 2004 Page 5 of 55

II. OBJECTIVES AND SCOPE
A. Objectives

It was found in the previous semester’s work [25] that
although there were many enterprise IM solutions available,
the problem with their lack of use had to do with manager
and employee attitude. Therefore, it was decided to change
the original objective of designing a secure IM application
to designing a cheap, workable add-on that will try and
solve IM security problems whilst public IMs were still
predominately used.

The objective for the project was to develop an
encryption add-on for an MSNP (MSN Messenger Protocol)
based [25] based client that met the information security
objectives in (VI). Although there are encryption add-ons
that are currently available for download (IV), the add-on to
be developed for the project had a small workplace focus
and was also tested under similar conditions to that of a
small workplace.

B. Scope

The prototype that was developed for the proof of
concept in the previous semester was a simple design that
would be impractical to implement in a real world
environment. The purpose for developing the prototype was
to develop a familiarity with how to implement a
cryptographic algorithm for a specified purpose.

During the second stage of project development, the

following was done to develop the prototype into a feasible
workplace solution:

 Implement a more effective algorithm than DES to do

the encryption of the messages sent
 Provide a key management system required to ensure

that the keys used for encryption will distributed
appropriately

 Provide a data integrity mechanism to ensure that
messages aren’t tampered with by a third-party

 Provide an authentication mechanism to ensure that
only authorised parties are privy to sensitive
information

When developing these features, considerations were

made towards:

 The level of security that would be provided
 The performance of the add-on. The add-on must be

practical and not inconvenience users.

Originally, once the MSN (MSNP based) prototype had

been developed into a feasible add-on, it was planned to
attempt to adapt the code for an OSCAR (Open System for
Communication in Real-time) based IM. OSCAR is the
protocol used by ICQ and AIM. However, during the
beginning of the second stage of development, it was found
that Microsoft had altered the method of accessing the
login servers. This meant that TjMSN had a major release
update that needed to be studied to ascertain how the

prototype was to be affected. This meant that the project
fell behind schedule and an actual OSCAR implementation
was not developed. However, the prototype did not include
any MSN specific functionality. Therefore, the prototype
would need only minor changes to accommodate an
OSCAR implementation.

CAIA Technical Report 041123A November 2004 Page 6 of 55

III. MAJOR CONCEPTS
This section describes the major theories and concepts

that formed the backbone of the project. These concepts
were studied in depth during the first semester’s
development work [25] and were used as a reference during
the second semester’s project development.

A. IM Protocols

IM protocols define the way an IM application
functions, including the services they provide, the network
components needed and how these components interact with
each other. Currently, the most widely used public IM
applications in the workplace [2] are:

1. AOL Instant Messenger (AIM)
2. Microsoft MSN Messenger
3. Yahoo! Messenger
4. ICQ

Both AIM and ICQ use the Open System for

Communication in Real-time (OSCAR) protocol. Although
both IMs use the same protocol, they are not interoperable.
MSN uses the MSN Messenger Protocol (MSNP) and is
also the protocol used for the project prototype.

Understanding the IM protocol is important as it details

what the IM application is capable of and what sort of
design limitations may be imposed. For an in depth
discussion of OSCAR and MSNP, refer to [25].

B. Cryptographic Basics
In a general scenario involving communication

between two entities over an insecure channel, the
communication exchange runs the risk of being intercepted
by an unauthorised entity. This scenario is shown in (Figure

1 - Basic Communication Exchange). Alice and Bob exchange the
message m with each over the insecure channel. Eve is
listening in on the exchange and also receives m.

Figure 1 - Basic Communication Exchange

If Alice and Bob were not exchanging sensitive data,
Eve’s eavesdropping would be a harmless nuisance.
However, if the data exchanged was sensitive and Eve was
able to intercept it, then the result may be disastrous.

Cryptology is the technology used to keep sensitive

data, exchanged between two parties, hidden from
eavesdroppers. This is done by encrypting the data being
exchanged in a manner that only the intended receiver can
decrypt it.

Referring back to the general scenario, encryption will

now be used in the communication exchange between Alice
and Bob. First, Alice and Bob agree on a secret key Ke.

This will be done via another communication channel that
Eve cannot intercept. For example, Alice can mail Bob the
key.

When Alice goes to send the plaintext message m, she

encrypts it using an encryption function E and the key. This
results in a ciphertext c, which is sent to Bob. As Bob
knows the secret key, when he receives c, he is able to
decrypt with the decryption function D. The result of this
function is the message m, which Bob can now read. This
process is shown in (Figure 2 - Generic Encryption Scenario). Eve
can still intercept messages sent on the channel, however
now Eve intercepts c instead of m. As Eve does not know
what the key Ke is, Eve cannot decrypt the ciphertext and
therefore cannot read the message sent.

Figure 2 - Generic Encryption Scenario

C. Cryptographic Algorithms

As seen in the generic encryption scenario above, Alice
uses an encryption function to convert the plaintext message
into ciphertext. The function uses a cryptographic
algorithm to perform the conversion. There are many
different cryptographic algorithms. The algorithms can be
grouped into classes called primitives. There are three main
primitives: unkeyed, symmetric keyed and asymmetric
keyed (Cryptographic Primitives).

Unkeyed algorithms do not require any keys. An

example includes arbitrary length hash functions, the main
subclass of unkeyed algorithms. Hash functions work by
generating a hash value (a small message digest) from a
large message source. Hash functions are implemented in
many cryptographic processes, including digital signatures,
key establishment and random number generations. Hash
functions are also implemented in Message Authentication
Codes (MAC). However, as MACs use a symmetric key,
they are therefore classed under the symmetric keyed
primitive.

Symmetric key algorithms are also known as secret key

algorithms. These algorithms use a single key, called a
secret key, to manipulate the data. The secret key is shared
by authorises entities and is kept secret from everyone else.
Symmetric key algorithms can be implemented in the
following ways:

 To provide confidentiality by using the same key to

encrypt and decrypt data. Unauthorised entities should
not know this key.

 Generation of pseudorandom numbers
 Form part of a key establishment process
 Perform authentication and data integrity checks in the

MAC process through using the same key to generate
and validate the MAC

m

m m

Alice

Eve

Bob
 m

c

m,c:= E(Ke, m) c,m:= D(Ke, c)

Alice

Eve

Bob
c

CAIA Technical Report 041123A November 2004 Page 7 of 55

Asymmetric key algorithms are also known as public

key algorithms. These algorithms use a set of two related
keys known as a key pair. Both authorised and
unauthorised entities are able to know what the public key
is. The private key should only be known to the entity that
owns the key pair. The relation between the private and
public key is such that the private key cannot be discovered
using the public key. Asymmetric key algorithms are
implemented in the following way:

 Calculating digital signatures
 Establishing cryptographic keying material

Each cryptographic algorithm should be evaluated

according to the following criteria to assess which is the
best algorithm for the required functionality:

1. Security level: Usually, this criterion is difficult to

determine. Normally, the level of security is defined by
the upper bound of the level of work necessary to
defeat the targeted information objective/s. This upper
bound is also known as the work factor.

2. Functionality: As stated previously, a combination of
cryptographic algorithms is needed to cater for all four
of the information security objectives. The
functionality defines which objective/s the algorithms
are the most suitable to.

3. Modes of Operation: The algorithms will display
varying characteristics depending on how they are
applied and what type of inputs used. Therefore, the
mode of operation will determine what type of
functionality the algorithm will provide.

4. Performance: This measures the efficiency of an
algorithm, depending on its mode of operation.

5. Implementation Ease: This measures how easy it is to
implement the algorithm in a practical environment.
For example, sometimes the environment may cause
there to be a performance or level of security trade off
because the hardware or software may be below the
minimal requirements needed to run a more efficient or
secure algorithm.

D. Information Security
The main concept behind cryptology is information

security. Information security aims to handle and minimise
data communication problems. Not only can sensitive data
be read by eavesdroppers, the data can also be intercepted,
altered and sent to the intended receiver or passed onto an
adversary. Another data communication problem is
disputes about the content of a past communication
exchange.

To deal with these problems, information security has

the following main objectives:

 Confidentiality (or privacy): concerned with

preventing eavesdroppers from being able to read the
information that they have intercepted.

 Data integrity: involves ensuring that the data received
has not been altered in any way. Alterations include
deleting and modifying all or part of the data as well as
inserting additional data.

 Authentication: focused on establishing the identity of
the user or system that originated the data.

 Non-repudiation: aims to prevent the denial of
previous commitments or actions as well as prove the
integrity and origin of the information independently by
a third party.

In general, most data security systems combine two or

more of the above objectives to gain a satisfactory level of
security. For example, confidentiality would not ensure that
the entity that the communication exchange is being
conducted with is an authorised entity. Hence,
authentication needs to be implemented in conjunction with
confidentiality.

One of the aims of the project was to include all these

security objectives. Some cryptographic algorithms are able
to serve multiple objectives; such as digital signature
algorithms are able to provide authentication, data integrity
and non-repudiation.

E. Kerckhoff’s Principles
August Kerchoffs, one of the great early cryptologists,

published in 1883 what he deemed were the six essential
attributes that a military cipher should contain. They are
[7]:

 The system should be, if not theoretically unbreakable,

unbreakable in practice.
 Compromise of the system should not inconvenience

the correspondents.
 The key should be rememberable without notes and

should be easily changeable.
 The cryptograms should be transmissable by telegraph.
 The apparatus or documents should be portable and

operable by a single person.
 The system should be easy requiring neither knowledge

of a long list of rules nor involving mental strain.

With modifications to adapt to the modern computer

world, these attributes were taken into consideration when
designing the project.

The second attribute was later expanded and became

known as ‘Kerckhoffs’ Principle’:

“The security of the encryption scheme must depend

entirely on the secrecy of the key and not the secrecy of the
algorithm.” [7] This principle formed an important basis for
the design of the project.

CAIA Technical Report 041123A November 2004 Page 8 of 55

IV. CURRENT SOLUTIONS
Through the second semester of the project

development, investigations into what solutions were
already available were made periodically. The below are
the most recent solutions that were looked at. These
solutions were also discussed in the context of usage
defined for the project.

A. CryptoHeaven

CryptoHeaven [26] is an application that offers a
secure Internet communications service. It consists of the
following:

 Secure email
 Secure online storage, file sharing and distribution
 Secure instant messaging
 Secure and private discussion forums

The features above are integrated into a single user

interface. There are two types of accounts offered: free and
premium.

The cryptography used includes the Advanced

Encryption Standard (AES) cipher with a 256-bit symmetric
key, public key cryptography using 2048 to 4096-bit
asymmetric keys and the Secure Hash Algorithm (SHA-
256) message digest function.

The major difference between this product and the

solution for the project was that the product offered a secure
solution to numerous Internet communication services such
as email and instant messaging. The project’s focus was
solely on securing instant messaging. Therefore, certain
design considerations may be different to that of
CryptoHeaven.

B. Top Secret Messenger (TSM)

Top Secret Messenger (TSM) [27] is a public key
encryption plug-in for popular IMs and e-mail clients such
as ICQ Instant Messenger®, MSN and Microsoft Outlook®.
TSM uses Elliptic Curve Cryptography (ECC) algorithm as
well as SHA-1 hash function and Triple DES (3DES).

There are two versions of the plug-in available: trial

and registered. The trial version is basically a demo of TSM
technology. It uses weak 8-bit encryption keys instead of
the 307-bit keys used in the registered version.

Although the product provides a solution to the

problem investigated for the project, it is at a cost. It was
decided in the first semester [25] that the focus would be on
small business that did not have the monetary funds to buy
enterprise IMs. In the free version of TSM, the security
provided is minimal and not feasible for actual workplace
usage.

C. Secway Simp Pro and SimpLite
Similar in concept to the encryption add-on proposed

by the group, Simp Pro targets the corporate environment
and provides encryption of conversations across a number
of popular IM networks with a variety of encryption
algorithms. It also has the ability to encrypt file transfers in
ICQ and MSN.

Public Key ciphers supported are RSA (2048 to 4096-

bit), Diffie-Hellman, DSA and ECC. Symmetric ciphers
available are AES, 3DES, CAST and Twofish, all of which
are limited to 128-bit key lengths.

SimpLite, a reduced feature version of Simp Pro, is

available free for personal use. It supports two 2048-bit
RSA keys per installation and can use either 128-bit AES or
Twofish symmetric ciphers.

The cost of Simp Pro is 25€ per licence, or 45€ for two

licences for small offices/home. Bulk purchases for
enterprise users range from 10€ per licence starting from 10
licences.

CAIA Technical Report 041123A November 2004 Page 9 of 55

V. PROJECT DEVELOPMENT PROCESS
This section outlines the project development

undertaken to design and develop the prototype. The
development occurred in three major stages: prototype
assessment, prototype design and prototype testing.

A. Prototype Assessment

The prototype developed in the previous semester was
assessed to establish what parts of the prototype was
reusable or needed further development. The majority of
the assessment was related to the cryptography used and
information security objectives. The old prototype only
provided confidentiality. It did not have any authentication,
data integrity or non-repudiation mechanisms. Research
was done to gain knowledge on how to implement these
mechanisms with respect to the application context.

Also, the encryption algorithm used (DES) was not a

feasible solution as there are known attacks against it. This
meant that a newer, more efficient algorithm needed to be
investigated and implemented. During the assessment,
considerations were also made in regards to the limitations
that the context of use (i.e. in an IM application) were made
to ensure that the final solution would be feasible.

B. Prototype Design

This section outlines the software development life
cycle, development tools and cryptographic tools used to
develop the prototype design.

1. Software Development Life Cycle

An evolutionary prototyping approach was taken
during the design and development of the prototype. This
was an iterative approach, refining parts of the system for
each iteration. This approach allowed the reuse of code,
including code from the original prototype developed in the
first semester.

2. Development Tools

Crimson Editor (Windows) and Mi (OS X) text editors
were initially used when developing the prototype. These
tools were replaced, though, when a change in the MSNP
login process required that code be transferred to a more
recent version of TjMSN. The new development tool
chosen was NetBeans IDE.

a) NetBeans IDE 3.6

NetBeans IDE is a free, open-source Java development
environment available on a number of platforms. It is also
the environment in which TjMSN was originally developed.
NetBeans was chosen as the replacement environment as it
allowed for easier editing of TjMSN’s existing GUI and
simplified compilation of classes with multiple
dependencies. NetBeans also allowed the group to
standardise development environments.

b) Java 2 SDK
The Sun Java 2 SDK1.4.2 was used to compile the Java

code, which was the most recent SDK available at the time
of development. Although Java 2 SDK 5 has now been
released, the final implementation of the prototype was
compiled using J2SDK v1.4.2.

c) Ethereal

The Ethereal packet analysis tool [18] was used to
observe IM conversations as they appeared on the network
before and after encryption was activated.

3. Cryptographic Tools

The J2SDK v1.4.2 by default does not contain the
necessary packages or settings required to obtain a
sufficiently high level of cryptographic security. The Java
Cryptography Provider for Java Cryptography Extensions
(JCE) supplied with v1.4.2 does not support the RSA
algorithm, while the Security Policy file of the default Java
installation prevents the use of long encryption keys. To
reach a suitable level of security, a third party
Cryptographic Provider and an enhanced Security Policy
were required.

a) The Legion of Bouncy Castle

The Legion of Bouncy Castle [15] is a group who have
written a set of cryptographic APIs for Java including a
Cryptographic Provider. These files are available free of
charge and are open source. The Bouncy Castle
Cryptographic Provider supports a wide range of
cryptographic methods and algorithms and was used in
place of the Sun Java Cryptographic Provider for all
functions of the prototype.

b) Unlimited Strength Security Policies

United States policy restricts the exportation of high
strength encryption technology. Therefore, encryption key
sizes for a default installation of the Sun JRE are limited to
a “strong” length of 512-bits. As the RSA keys to be used
by the prototype range up from 1,024-bits, it was required
that a replacement “unlimited” strength US Export Policy
File be obtained from the Sun JCE website.

c) Java KeyTool

An individual’s private key, used to decrypt received
messages and to sign outgoing messages, must be prevented
from being accessed by any unauthorized persons.

Rather than create a program or method to protect and

organise a user’s keys, it was decided that an existing
alternative should be located and used by the prototype.

The Java KeyTool [20] provides a method of generating

and storing an individual’s private key, in addition to any
public keys they may have obtained, in single file called a
KeyStore. This KeyStore is protected by a password and
encrypted on the hard disk. Also, KeyStore files can be
interfaced directly from within a Java program using the

CAIA Technical Report 041123A November 2004 Page 10 of 55

methods provided within the Java Runtime Environment
(JRE).

KeyTool was used to manage the key-pairs and public
keys used by the prototype.

C. Prototype Testing
The prototype was tested often during development.

Individual routines were first tested as standalone programs
run from the console using a ‘test harness’ program. A test
harness is a simple program which can call methods from
within a class to test its operation, and does not require the
TjMSN client to be running.

Once successfully tested, methods were written into the

prototype classes and tested in a ‘live’ situation on the MSN
Network.

a) Testing Environment

During early development the prototype was tested by
running two instances of TjMSN on a single computer
simultaneously. A connection to the MSN Network would
be established and messages sent between the two clients.

Once the prototype had matured to a more complete

form, several tests were carried out in an environment
similar to that which might be found in a small company.
This was a small LAN consisting of three Windows-based
computers connected to the Internet through a gateway.
Tests were also carried out by communicating between the
LAN and a remotely located computer.

b) Functionality Testing
The prototype functions were tested by establishing and

undertaking encrypted conversations between two clients
connected to the MSN network. A debugging console was
used during this process, allowing any exceptions or errors
encountered to be traced. The code was also tested against a
range of incorrect user input to aid in developing error-
handling code.

c) Performance Testing

Test harness programs were written to interface with
the prototype’s encryption code and time the implemented
functions on a number of different systems. This was done
to observe the delay introduced into a conversation by
activating encryption and establish a baseline system for
acceptable performance.

CAIA Technical Report 041123A November 2004 Page 11 of 55

VI. INFORMATION SECURITY DESIGN PRINCIPLES
This section describes the information security design

principles that were used to guide the development of the
prototype. The actual design implementation of these
principles, can be seen in section VIII.

The information security objectives (confidentiality,

data integrity, authentication and non-repudiation) were
used to form a set of requirements for the prototype. The
aim was to ensure that the prototype employed these
objectives as part of its design.

Another design focus was implementing Kerckhoffs’

principle, whereby the strength of the encryption depended
on the secrecy of the key. To achieve this, the appropriate
key establishment and key management techniques needed
to be implemented.

A. Confidentiality
The first information security objective dealt with was

confidentiality. As seen in the generic communication
scenario, the basic concern when exchanging sensitive data
over a channel is that an unauthorised entity is able to
intercept and read the data that is being exchanged.
Confidentiality is concerned with preventing the ability of
the unauthorised entity to read the data being exchanged.

The method to keep data confidential is to encrypt the

data. There are two types of encryption algorithms that are
normally used to do this: stream ciphers and block ciphers.
Stream ciphers encrypt individual characters of a plaintext
message one at a time. In contrast, block ciphers
simultaneously encrypt groups (i.e. blocks) of characters of
the plaintext message.

For the prototype, a block cipher was chosen to

implement confidentiality. The major reason for this was
that although there are plenty of resources for the theory of
stream ciphers and stream cipher design principles, most
stream ciphers are proprietary. For example, LEVIATHAN
has a Cisco patent pending. Therefore, there are no official,
standardised documentation or code libraries for the stream
ciphers currently being used in systems.

The chosen block cipher was the Advanced Encryption
Standard (AES), which is a US government standard cipher.
The rationale behind this was that as a government standard,
it had been proven to work effectively and had yet to have
an effective attack against it. Also, because AES is
standardised, all encryption libraries contain it, making the
actual implementation of AES easier.

A key problem with using block ciphers is that the

plaintext to be encrypted may be longer than the block
length. To deal with this, a block cipher mode was used.
The chosen block cipher mode was the Cipher Block
Chaining (CBC) mode. CBC is the most widely used block
cipher mode in current systems. Hence, like with AES,

there were many documentation and code library sources to
examine and choose from.

1. Block Ciphers

Block ciphers are a fundamental element in many
cryptographic systems and belong under the symmetric key
primitive. A block cipher is an encryption function that
maps n-bit plaintext message blocks to n-bit ciphertext
blocks. In other words, it is used for fix-sized blocks, with
n being the block length. For short messages, the block
cipher can be used directly. More commonly, however, the
message length is longer than the block length. If this is the
case, a block cipher mode should be used. The main reason
why the cipher text generated is because this avoids data
expansion.

Block ciphers are normally implemented with a fixed,

secret key. This corresponds with Kerckhoff’s principle,
whereby confidentiality is dependent on the secrecy of the
key as it is assumed that the algorithms for the encryption
and decryption are publicly known. The key is a string of
bits, like the plaintext and ciphertext. The key is chosen at
random. The common key sizes are 128 and 256 bits.

For unique decryption of the ciphertext, the algorithm

needs to be one-to-one, where the plaintext can be mapped
to the ciphertext. For any fixed key, a lookup table that
maps the plaintext to the ciphertext can be computed. The
size of the lookup table would be huge. For example, for a
block cipher with a 32-bit block length, the lookup table
would be 16Gb [6].

Block ciphers on their own are used to encrypt

information, providing confidentiality. As a building block
in a cryptographic system, block ciphers can be used for a
variety of functions. For example, as part of pseudorandom
number generators, stream ciphers, MACs and hash
functions, message authentication and data integrity
techniques, entity authentication protocols and digital
signature schemes.

When implementing block ciphers in practical

applications, tradeoffs need to be made. These include
speed requirements, memory limitations and platform
restraints (e.g. hardware, software). This results in a
tradeoff between efficiency and security. It is therefore best
to look at several block ciphers before deciding which is the
best for the intended application.

a) Advanced Encryption Standard (AES)

The block cipher that was chosen for this project was
the Advanced Encryption Standard (AES) (Advanced
Encryption Standard (AES)). AES was developed through the
National Institute of Standards and Technology (NIST),
who had asked for cipher proposals from the cryptographic
community. The cipher that was chosen to become AES
was the Rijndael algorithm and became a US government
standard.

CAIA Technical Report 041123A November 2004 Page 12 of 55

The Rijndael algorithm is a symmetric block cipher
that processes data of 128-bit block length, using keys of
either 128, 192 or 256 bits in size. Although Rijndael is
able to handle additional block sizes and key lengths, this is
not included in the NIST standard [4].

The structure of a single round of AES is shown in

Advanced Encryption Standard (AES). Depending on the key
size, the full encryption process consists of 10-14 rounds.
The plaintext, which is 128 bits (16 bytes) in size, is input
through the top of the structure. The plaintext is then XOR
with 16 bytes of the round key.

Each of the 16 bytes is then used as an index into an S-

box table. The S-box is a substitution box, which is a
lookup table that is publicly known. All the S-boxes are
identical. The S-box table maps 8-bit inputs to 8-bit
outputs.

The bytes are then rearranged in a specific order and

are mixed into groups of four using a linear mixing
function, completing a single round. The term linear refers
to the fact that each output bit of the mixing function is the
result of the XOR of the input bits.

The core reason for why AES was the chosen block

cipher was that it is a current US government standard. The
cipher has yet to have an attack defined for it (although it
may be attacked in the future) and is used extensively. In
addition, it is relatively easy to implement and is supported
by all cryptography libraries.

b) Alternative Block Ciphers

There were two main alternative block ciphers that
were looked at: the International Data Encryption Algorithm
(IDEA) and Triple DES (3DES). Both of these algorithms
are based on the Feistel cipher. The Feistel cipher takes the
plaintext and splits it into two halves, L and R. For each
round, there’s a subkey Ki, which is derived from the cipher
key K. Within each round, L is XOR with F(Ki, R), where F
is some kind of function. L and R are then swapped. The
main advantage of using a Feistel cipher is that for
decryption, the same process is used. This makes it easier
to implement.

IDEA [6] uses a 128-bit key to encrypt a 64-bit

plaintext message into a 64-bit ciphertext block. The
structure of IDEA is based on the Feistel cipher, whereby it
uses 8 rounds with six 16-bit subkeys followed by an output
transformation. The main reasons why IDEA was not used
were:

 There are known attacks on IDEA, which have

continued to improve [5]
 The block size is too small

3DES [6] is derived from the NIST standardised block
cipher, the Data Encryption Standard (DES). DES was
developed in the mid 1970s and was the first commercial-

grade algorithm that had open and fully specified
implementation documentation. Although it is the most
well known symmetric key cipher, it is no longer useful in
modern implementations. DES uses a 56-bit key and
generates 64-bit ciphertext blocks. By today’s standards,
the key and block size are too small. 3DES uses three DES
encryptions in sequence. This solves the small key size
problem, however there is no known solution for the small
block size problem. Additionally, DES is already a slow
cipher by today’s standards and 3DES is a third of the speed
of DES. Therefore, 3DES was not chosen as the block
cipher to implement in the prototype.

c) Key Size

AES can operate with key sizes of 128, 192 and 256
bits. Although a 128-bit key is sufficient for most
applications, it is liable to collision attacks (Collision
Attacks). This type of attack depends on the fact that
collisions (duplicate values) appear more regularly than
expected.

For example, the same key might be reused after

exhausting all other key values for a particular application
such as secure online shopping transactions. An attacker
might expect this and be able to insert messages from the
old transaction while the new transaction is occurring.

A recommended design rule [5] is: “For a security

level of n bits, every cryptographic value should be at least
2n bits long”. Therefore, for 128-bit security, a 256-bit key
was implemented. AES operates slower with a 256-bit key
than a 128-bit key. However, for the intended
implementation, the delay would be negligible to the user.

2. Block Cipher Modes

Block ciphers can only encrypt fixed-sized blocks. For
encrypting messages that are longer than the block length, a
block cipher mode need to be used. A block cipher mode is
an encryption function built using a block cipher.

A major point to emphasise is that encryption modes

are only able to prevent an eavesdropper from reading the
data. There is no authentication mechanism. Thus, the
eavesdropper is able to alter the data without needing to be
able to read it. In a lot of situations, the damage caused by
modified data is greater than the fact that the data is being
read. Therefore, the encryption should always be combined
with authentication.

The encryption and authentication method is still not

entirely secure as the attacker will still be able to perform a
traffic analysis. A traffic analysis involves determining the
fact that a communication exchange is currently occurring,
when it is occurring, how much data is being communicated
and whom the communication exchange is with. Although
traffic analysis can be prevented, it generally takes up a lot
of bandwidth for general purposes and is therefore not
implemented.

CAIA Technical Report 041123A November 2004 Page 13 of 55

a) Cipher Block Chaining (CBC)
The most commonly used block cipher mode is cipher

block chaining (CBC). This was main reason why CBC
was the chosen block cipher mode as there were ample
documentation sources and code library providers.

CBC uses an n-bit initialisation vector (IV). The inputs

of the algorithm are the key, the IV and one n-bit plaintext
block. Each block of the message is encrypted separately,
with the plaintext first being XOR with the previous
ciphertext block. This is referred to as the chaining
mechanism. Also, the IV needs to be changed (using either
a counter or random field) for each block. The reason why
this is done is to ensure that if two plaintext blocks were the
same, their ciphertext blocks would not be identical,
reducing the amount of information given to the attacker.

b) Electronic Codebook (ECB)

An alternative mode that was looked at was the
electronic codebook (ECB) mode [5]. Each block of the
message is encrypted separately. This creates a problem in
that if two plaintext message blocks are the same, then their
ciphertext block will be identical, providing an attacker with
information for cryptanalysis. For this reason, ECB was not
selected.

c) Nonce-Generated IV

There are several methods of generating the IV used in
CBC. These include fixed, counter, random and nonce
generated (Initialisation Vector (IV) Generation Methods). The
choice of how the IV is generated is important, as it
determines how much information is given to the attacker.

For example, when using a counter generated IV, if the

first blocks of a message have minor differences then the IV
counter could possibly cancel the differences during the
XOR process and generate identical ciphertext blocks. This
gives an attacker enough information to draw conclusions
about the differences between the two messages, which is
highly undesirable.

A nonce (number used once) generated IV has the

ability to deal with the problems in generating IVs. Each
message is given a unique number called a nonce. The
uniqueness of a nonce is its most important characteristic
and the same nonce should not be used with the same key.

The nonce can be randomly generated or be a message

sequence number. As discussed in section, message
numbering helps ascertain whether or not an adversary has
deleted or inserted messages during a communication
exchange. Therefore, the nonce that was used in the
prototype also had a dual role as the message sequence
number.

B. Data Integrity
Data integrity is concerned with ensuring that the data

being transmitted is not altered in any way during its path
through the communication channel, to the intended

recipient. Different types of alterations can occur, including
deleting and modifying all or part of the data as well as
inserting additional data.

Looking back at the generic encryption scenario, when

Alice sends the message m, Eve alters the message to m*.
So, Bob receives m*instead of m. When Bob receives a
message, Bob needs to determine whether the message was
the one that Alice sent. Therefore, Bob should not assume
that all messages that he receives comes from Alice.
However, if he does not know who sent the message, then
the message exchange is useless. Subsequently, to help
with ensuring data integrity, authentication should be
implemented so that Bob knows whether the message came
from Alice or not. This type of authentication is known as
message authentication (or data origin authentication).

Nonetheless, having authentication only does not

completely solve the problem of data integrity. Eve is still
able to delete messages, insert old messages or change the
order of the messages. Therefore, message numbering
should also be implemented so that Bob knows that he is
getting the correct sequence of messages.

The message sequence numbering policy used for the

prototype was that the sequence number started at zero and
incremented sequentially by one for each successive
message. If Bob receives a message whereby the sequence
number has not been used previously in the current
exchange and satisfied the condition that it was one greater
than the previous number, the message would be accepted.

Another method to ensure data integrity is for Alice to

generate a message digest using a hash function [3] and
sends it to Bob along with the ciphertext message. When
Bob receives the message, he also takes generates a message
digest and compares it the one Alice sent. If the message
digests match, it confirms that the message Alice has sent
has not been altered in any way.

The primary reason why the latter solution was not

implemented was by sending a hash along with the message,
it may exceed the message. There are ways to counter this,
however it would make implementation more complicated.
Therefore, the first method of ensuring data integrity was
used, with the details of authentication illustrated in section
(Message Authentication).

C. Authentication
The aim of authentication is to be able to establish the

identity of the entity that originated the data. This is
important as it ensures the data sent is coming from a
trusted, authorised entity. Essentially, there are two types of
authentication: entity authentication and message
authentication.

1. Entity Authentication

Entity authentication is concerned with the verification
of an entity’s identity in real-time, while the entity waits.

CAIA Technical Report 041123A November 2004 Page 14 of 55

The entity that is questioning the identity is known as the
verifier and the entity whose identity is being questioned is
known as the claimant. The most common method of entity
authentication is for the verifier to challenge the correctness
of a message by checking to see whether the claimant is
privy to a secret that is associated with an authorised entity.
This is known as challenge-response identification.

a) Challenge-response Identification

The claimant confirms its identity to the verifier by
demonstrating that they are privy to a secret associated with
the verifier, without actually revealing the secret itself to the
verifier. The “challenge” is normally a number that has
been chosen secretly by one entity at the beginning of the
identification protocol.

As well as operating in real time, entity authentication

also makes numerous challenges throughout the
communication exchange to ensure that an adversary has
not “hijacked” the communication exchange. Given that
there are numerous entity authentication attempts during a
communication exchange, the challenge should be a time-
variant parameter that is always unique. A nonce satisfies
this requirement and is therefore used as the challenge.

As stated in section VI.A.2.c), the nonce used for the

prototype is also a message sequence number. In the
context of entity authentication, the sequence number can be
used as a challenge as it is specific to a particular pair of
entities and must be explicitly or implicitly associated with
both the verifier and the claimant.

(1) Challenge-response Using Symmetric Key
Encryption

The challenge-response mechanism used for the
prototype involved symmetric (secret) keys. This required
the verifier and the claimant to share a symmetric key. How
the key is established between the two entities is detailed in
section VI.E - Key Establishment and Management.
The claimant uses the key to encrypt the sequence number
(the challenge) thereby demonstrating the knowledge of the
secret key and the challenge, proving the claimant’s
identity.

The reasons why this technique was used for entity

authentication were that the parameters used during the
authentication (the message sequence number and the secret
key) were also implemented for other functions within the
prototype. This created fewer overheads for the prototype,
which was desirable with respect to the context of use of the
prototype.

2. Message Authentication

Message authentication is also known as data origin
authentication. It is closely related to data integrity as it
checks the data origin, making sure it came from a trusted
source. Data that has been altered has a new source. For
example the data that Alice sends has been altered by Eve,

making Eve the new source of the data. As mentioned in
the data integrity section (VI.B), Bob should not assume
that Alice sent the message. If Bob cannot determine who
sent the message, then the message itself is useless. Hence,
message authentication essentially provides data integrity
and vice versa.

Methods of providing message authentication include

[6]:

 Message Authentication Codes (MACs)
 Digital signature schemes
 Before encryption, appending a secret authenticator

value to the text to be encrypted

It needs to be noted that unlike entity authentication,

message authentication does not operate in real-time, as it
does not have any guarantee of when the message was
created.

3. Message Authentication Code (MAC)

Message Authentication Codes (MACs) are used to
provide data origin (or message) authentication. They are a
special type of hash function where one of its inputs is a
secret key. The MAC function outputs a MAC value that is
sent along with the encrypted message. The receiver
generates a MAC value of the encrypted message received
and checks to see whether it is the same as the MAC value
received. The MAC values would be equal if the message
has not been tampered with.

a) CBC-MAC

CBC-MAC is an algorithm that converts a block cipher
into a MAC, using the secret key of the block cipher. CBC-
MAC involves encrypting the plaintext message using CBC
mode, then keeping only the last block of ciphertext and
discarding the other blocks. The MAC value is then
computed by using the last block and the secret key to
generate a hash. It is important that the key used in CBC-
MAC is different to the key used in CBC encryption.
Therefore, during the key exchange process, two secret keys
need to be exchange: one for encryption and one for
authentication.

The major problem with implementing MACs is that

MACs take a long time to compute when compared to
computing ciphertext. As the context of the project is to
secure instant messaging, it is important to find a MAC that
will not excessively slow down the communication
exchange, as the messaging will no longer be “instant”. The
block cipher mode used is CBC, so by using CBC-MAC,
the same primitive algorithms are used. This makes
proficient implementation easier. A UMAC [5] was also
considered, as UMAC algorithms are specifically adapted to
particular types of systems to make the generating a MAC
multiple times quicker. The main reason why it was not
implemented was not used was that finding a Java library to
implement UMAC proved to be difficult.

CAIA Technical Report 041123A November 2004 Page 15 of 55

D. Non-repudiation
The aims of non-repudiation are to prevent the denial

of previous commitments or actions as well as prove the
integrity and origin of the information independently by a
third party. By referring back to the generic encryption
scenario, it can be seen that non-repudiation involves, like
data integrity, a form of authentication.

Bob should ensure that the person he is communicating

with is Alice and that her messages are not being altered in
any way. Subsequently, at a later date, Alice cannot dispute
that it was not with her the communication exchange
occurred or that the data Bob received was not what Alice
had intended for Bob to receive.

The implementation of non-repudiation therefore

involved the same techniques used in entity authentication
and message authentication.

E. Key Establishment and Management

To share the secret key used for confidentiality, a key
establishment process or protocol must be implemented.
This is an important aspect in implementing information
security as it deals with how to apply Kerckhoffs’ Principle.
There are numerous different methods of implementing a
key establishment protocol. These methods have a common
objective of establishing a shared secret (the key) with an
entity whose identity can be verified. This involves is
another type of authentication called key authentication,
whereby the identity of an entity that can possibly share a
key can be verified.

1. Session Keys

The secret key that is shared between two entities is
also known as a session key as the key is transient and is
only valid for the current communication session. Once the
communication session is over, the key is discarded. There
were three main reasons why session keys were
implemented in the prototype.

The first reason was to remove the need of having to
store the secret key. In the case that the entity
communicates with a large number of entities, a large
number of keys will need to be saved, creating possible
storage issues. The second reason was to limit the amount
of information given to an attacker. The more ciphertext
that is sent with the same key, the more information an
attacker has for cryptanalysis. The final reason was to limit
the exposure of data if the secret key is compromised. If an
attacker discovers the secret key, the exposure of the data
(with respect to both time and data quantity) can be limited
as the key is discarded upon the termination of the session.
Therefore, for the next session, the attacker would have to
start again in trying to discover the key.

An advantage with IM conversations is that research

has found that most IM conversations last an average of 4.5
minutes [14]. Therefore the attacker does not have long to
try to discover the session key before it is discarded.

2. Key Establishment Process

The key establishment process used for the prototype
was one where the key establishment was basically a type of
message authentication where the message was the secret
key. The process involves transporting the secret key over
a communication channel using a combination of a public
key encryption scheme and a digital signature, shown in
Figure 3 - Key Establishment Process.

Alice generates an AES symmetric (secret) key and

encrypts the key using Bob’s public RSA key. This is sent
over the channel where Bob decrypts the message using his
private RSA key and takes an MD5 hash of the key. This
ensures that the secret key is shared only with Bob.
However, Bob still needs to be assured that it was Alice that
sent him the key. For that reason, Alice also generates an
MD5 hash of the AES secret key, encrypts it with her
private RSA key and sends it to Bob. Bob then decrypts the
message using Alice’s public RSA key. The decrypted
message is the hash of the secret key that Alice generated.
Bob compares this hash value with the hash value that he
generated of the secret key sent in the first message. If the
hashes match, then it confirms to Bob that it was Alice that
sent him the secret key. There are numerous ways in which
Alice and Bob can exchange their RSA public keys, such as
sending it via an email. One method implemented in the
prototype is discussed in section VIII.B

Figure 3 - Key Establishment Process

3. Hash Functions

Hash functions, also known as message digest
functions, belong under the unkeyed primitive and are the
most versatile cryptographic algorithms. Note that a MAC
is a type of hash function, however it uses a key and is thus
classed under the symmetric key primitive. Hash functions
can be used for authentication, digital signatures and
encryption. A hash function operates by taking an input of
an arbitrarily long message and produces a fixed-sized result

CAIA Technical Report 041123A November 2004 Page 16 of 55

called a hash. The hash is sometimes called a digest, as it is
basically a compact summary of the message.

A hash function generates a hash by mapping the bits

of the message string to the bits of a fixed length string.
Hash functions are known as many-to-one functions. This
is because the message string is longer that the fixed string
it is mapped to, so “many” message bits can be mapped to
the same fixed string bit. This characteristic implies that
collisions (where pairs of different inputs generate identical
outputs) are unavoidable with hash functions. In practice, a
collision is computationally difficult to find, thus collisions
effectively never occurs.

a) MD5

MD5 [5]&[6] is a hash function developed by Ron
Rivest, who also designed its predecessor, MD4 [5]. MD5
takes an arbitrarily long message string and generates a 128-
bit hash of the message. The message is split into 512-bit
blocks, with the last block including the message length and
any padding needed to make it 512 bits long.

The blocks are processed in order using a compression

function and a 128-bit intermediate state. The state is split
into four 32-bit words. The compression function has four
rounds in which the message block and the start are mixed
using a combination of arithmetic and logical operations.
These operations include addition, XOR, AND, OR and
rotation operations. After the four rounds, the compression
function, the input state and result are added together to
construct the output of the compression function.

This type of hash function is known as an iterative hash

function. By design, if the compression function is collision
resistant, then the hash function is also collision resistant.
This has serious implications with the usage of MD5, as the
compression function of MD5 is known to have collisions
[Appendix C]. In spite of this, there were no known attacks
on MD5 itself at the time of implementation. Another
problem with MD5 is that its 128-bit hash has a low security
level whereby a collision can be found in about 264
evaluations of the hash function.

An alternative hash function that was looked at was the

Secure Hash Algorithm (SHA-1) [5][6]. SHA-1 is also
based on MD4, but it generates a 160-bit hash. The major
problem with SHA-1 is that it too has a low security level,
whereby a collision can be found in 280 evaluations. NIST
have published a draft standard that outlines three new hash
functions based on SHA-1: SHA-256, SHA-384 and SHA-
512 [5][6]. The number after “SHA-” indicates the bit size
of the hash generated by these functions. These functions
are relatively new and have yet to be thoroughly studied, but
on the other hand, they provide a higher level of security
than MD5 and SHA-1.

The major reason why MD5 was the chosen hash

function was that a tradeoff needed to be made in terms of
security due to the fact that the hash function was to be

implemented in an MSNP-based system. The prototype is
restricted in the payload space available. Therefore, the
smaller hash size of MD5 made it the viable option in this
context.

4. Digital Signatures

A digital signature is designed to uniquely identify an
entity, similar to its handwritten counterpart. It is a type of
asymmetric (or public) key primitive, whereby each entity
has their own key pair consisting of a public key that can be
known by anyone (authorised or unauthorised) and a private
(secret) key that is known only to that entity.

A digital signature scheme is made up of three

algorithms:

 A random key generation algorithm, that generates a
key pair

 A signing algorithm that uses a private key to sign a
message, creating a signature

 A verifying algorithm that uses a public key to verify a
signature

As the signature can be verifiable by a third party

without needing the signer’s private key, it provides a
means for non-repudiation. Digital signatures can also be
sued for authentication and data integrity.

a) RSA

The RSA [13] signature scheme is one of the most well
known and widely used asymmetric key cryptosystems.
Not only able to provide signatures, RSA can also be used
for encryption purposes as well. The details of RSA can be
found in RSA and [13].

CAIA Technical Report 041123A November 2004 Page 17 of 55

VII. INSTANT MESSAGING DESIGN PRINCIPLES
The prototype requires a communications protocol for

setting up and managing encrypted sessions between IM
clients. When designing the protocol to be used by the
prototype, it was important to define a main objective and
then identify key areas that needed to be addressed.

The main objective was to create a protocol that

satisfies the security guidelines of section VI while:

• Maintaining compatibility with IM network

protocols
• Allowing easy portability between IM networks
• Minimising IM protocol knowledge
• Minimising protocol overhead.

By following these general design rules it was hoped to

produce a protocol that provided a high level of security
while still remaining practical and compatible with different
networks. The actual implementation of the protocol can be
found in [Section VIII: Prototype Design].

A. IM Protocol Compatibility and Portability

For the encryption add-on to be compatible with an IM
network, the data it generates must within the guidelines of
what is allowable on that particular network. It was also
important that the protocol be portable between various IM
networks. To achieve the best possible compatibility and
portability the protocol was designed to take advantage of
similarities between the networks.

1. Embedded Plaintext Commands

Prior investigation showed that the popular IM systems
exchange messages in plaintext using either UTF8 or ASCII
encoding. A command sent as UTF8 encoded text within a
message body would therefore be adaptable for use on any
network. It was decided that the protocol should operate by
exchanging command sequences embedded within the body
of a text message.

As using UTF8 encoded commands inside the body of

an instant message payload is within the parameters of the
IM network protocols, there is less likelihood of the data
being rejected by network servers due to ‘irregularity’.
[figure 4] shows how the encryption protocol is placed
within the message payload with an Instant Message.

+-----------------+-----------------------+
| IM Protocol | Message Payload |
+-----------------+-----------------------+

+-----------------------+-----------+
| Encryption protocol | Message |
+-----------------------+-----------+

Figure 4 - IM Message Payload

a) Other secure connection methods
As section VI describes, the encryption protocol takes

advantage secret-key and public-key encryption algorithms
and methods. Many Internet applications that secure

communications channels with secret-key and public-key
algorithms currently use Secure Sockets Layer (SSL) or
Transport Layer Security (TLS).

While TLS and SSL were initially examined as a

possible way of securing IM, they were found to be
unsuitable for a number of reasons.

TLS/SSL are based on a client-server relationship and

are implemented over a special TCP port for the given
communications protocol. For example, a secure http
session (https) would use TLS/SSL over TCP Port 443.
There are currently no TCP Port allocations for TLS/SSL
sessions using the MSNP and OSCAR protocols.

In addition, with the exception of some ICQ sessions,

the public IM networks do not establish direct connections
between users when message exchanges occur, meaning a
direct TLS/SSL connection between two subscribers would
not be possible in most circumstances. Establishing peer-to-
peer connections or using non-standard ports would
contravene the design objective of working within existing
IM protocol parameters.

2. Reduced IM Protocol Knowledge

The encryption protocol does not rely on information
generated by or unique to a specific IM protocol. By
minimising the amount of information required for the
protocol to function, it reduces the amount of changes
needed for use on different networks. Therefore, the
protocol deals only with text strings, and contains no
knowledge of the system in which it is being used.

B. Limiting Additional Information
The amount of information that can be carried within a

message payload is limited by the IM protocols [25]. As the
process of encrypting a plaintext message expands the
length of the message, it was important to try and minimise
the amount of additional protocol data sent with the
ciphertext.

Methods used to reduce the amount of information

exchanged included using short command codes and not
transmitting Initialisation Vectors (VIII).

CAIA Technical Report 041123A November 2004 Page 18 of 55

VIII. PROTOTYPE DESIGN

A. Message Capture and Encryption Protocol

The encryption prototype operates by intercepting each
message typed by the user before it is transmitted to the IM
server. It then scans the intercepted text for a special escape
sequence and command code, which determines whether
any operation should be performed on the text. The
message is then passed back to the IM client for
transmission.

When receiving messages, this process is reversed.

Messages are captured by the prototype as they are received
and are scanned for command codes before being passed
back to the client for display.

The encryption software operates without knowledge of

the IM network or client being used, dealing only with text.
This approach allows the software to be used with any
plaintext based messaging system with little or no
modification.

Modifications to the TjMSN client consisted of

message interception code and minor changes to the
Graphical User Interface.

1. Escape Sequence

A special escape sequence was used to identify
messages that required some form of action. The sequence
“###@ ” (including space) was chosen, as it is unlikely to
proceed any message during a normal conversation.

As text is passed to the add-on, any messages beginning

with this sequence are further examined for a ‘command
code’. Messages that do not contain the escape sequence
are passed back to the client unaltered and are transmitted to
the recipient.

2. Command Code

A two digit numerical code allows the add-on to
communicate and determines what actions should be
performed on the plaintext message. A two digit numerical
code was chosen rather than a textual code due to the
limited space available in each message payload.

The structure of the code is similar to the

implementation used in the OSCAR protocol [25], with
each code divided into a ‘family’ and ‘instruction’. A code
represented by the value XY, for instance, would indicate
Family X; Instruction Y. When a command code is
detected, the appropriate operation is completed and if
necessary a new command code will be substituted in its
place.

a) Code Families

The current protocol consists of four code families, with
each family defined by the action to be taken. Table 1 -

Command Code Families summarises the command codes that
are currently defined.

Family Code Action performed

1 Send request for Encrypted Session
2 Received request and encrypted key
3 Create and send signature
4 Received signature for verification
5 Send acceptance of Request

1

6 Received acceptance of request
1 Message to be Encrypted and

transmitted
2 Received encrypted message
3 Part 1 of split message*
4 Part n of split message*

2

5 Final part of split message*
0 Start encryption end sequence
1 Received notification of end

sequence
2 De-activate encryption and send final

end code

3

3 Received end code, de-activate
encryption

4 1 Generate and send certificate
 2 Received Certificate

Table 1 - Command Code Families

*Commands defined but not currently required in
prototype

Command codes can be categorised as being either

internal commands or external commands. Internal
commands provide instructions to the local client and can be
generated by buttons on the chat interface, while external
commands are generated from within the encryption
prototype and are transmitted to the remote client. An
example of an internal command is the code (11), which,
when the ‘activate encryption’ button is pressed, tells the
add-on to generate a new AES key and transmit this to the
remote user with the external code (12).

3. Secret Key Management and Use

Each encrypted session uses a shared 256-bit AES key
which is randomly generated and disposed of after the
session has been completed. A 128-bit AES key also
generated for use with the AES-CBC Message
Authentication Code (MAC).

a) AES Key Generation

The 256-bit and 128-bit AES keys are generated on the
computer of the individual who initially requests an
encrypted session. The source of randomness used to create
the key is Sun’s Pseudo Random Number Generator
(PRNG) [16]. The 256-bit key is used to encrypt and
decrypt messages, and also to generate nonce Initialization
Vectors for the encryption and decryption process. The
128-bit key is used to create a MAC of the ciphertext
generated by the 256-bit key for each message.

CAIA Technical Report 041123A November 2004 Page 19 of 55

b) Key Exchange and Authentication
Once session and MAC keys are generated, they are

encrypted using the RSA public key of the recipient of the
encryption request. An MD5 hash of the combined keys is
also encrypted using the private key of the initiator,
producing a digital signature. The encrypted keys and
signature are then transmitted to the recipient.

The recipient decrypts the secret keys using their

private key, and the MD5 hash using the initiators public
key. An MD5 hash of the decoded keys is then produced to
compare with the hash given in the signature. If the hashes
match, the keys are saved and the recipient may accept the
request and an encrypted session may begin. If the hashes
do not match then it can be presumed that the data has been
altered in some way in transit, or incorrect keys were used at
some stage of the process.

c) Synchronised Message Counters

When in an encrypted session, a counter kept by both
users is incremented every time a message is sent or
received, starting from zero. This allows each message to
be uniquely identified by the state of the counter when it
was sent or received. The importance of the synchronised
counter is explained in the sections Message Encryption and
Nonce Initialization Vectors.

d) Message Encryption

Messages are encrypted using a 256-bit AES key
initialised in CBC mode with PKCS#7 Padding. The
encrypted blocks are cycled using a random Initialisation
Vector, its source being derived from the message counters.
A Message Authentication Code is added to the ciphertext
message to ensure that the ciphertext is not altered in transit.

e) Nonce-generated IV

An integer message counter is used with the secret key
to create a nonce-generated IV for each message that is to
be encrypted. Starting from 0, the message counter is
synchronised between the users and increments by 1 for
each message. The state of the counter n is encrypted using
the secret session key k for every message, producing value
k(n), which is used as a source of randomness to initialize
the AES cipher before encrypting or decrypting a message.
The value of k(n) used to encrypt and decrypt a message can
never be re-used. It can be considered random as k is
unique to every session, while any instance of n can be used
only once per session.

An advantage of using the synchronised message

counters to create the IV is that the IV need not be
transmitted with the encrypted message. This prevents an
attacker from replaying any messages to the users, while it
also prevents an attacker from blocking messages, as this
would cause the counters to become out-of-sync. Not
transmitting the IV also helps to reduce the protocol
information in the message payload.

A drawback of the nonce-generated IV system is that

due to the process of converting an integer counter to a type
suitable for generating the IV, a limit of 10,000 messages is
applied to each session. This can be seen as an acceptable
limitation, as the number of messages sent using a single
key should be limited for security reasons.

f) Message Authentication Code

Before the ciphertext is transmitted, a MAC is created.
The prototype uses the AES CBCBlockCipherMAC method
provided by the Bouncy Castle package. The 128-bit secret
key is used for this function, which produces a 32-bit
sequence. This sequence is added to the front of the
ciphertext message before transmission. When a message
arrives, the received MAC is compared with a newly
generated MAC of the received ciphertext. Matching
MACs will allow the message to be deciphered.

4. RSA Key Generation and Management

The Java KeyTool utility was used to generate and store
the RSA public/private ‘key pairs’ used when developing
the software, although other methods are available. This
process is shown in KeyTool. X.509 Certificates (public
keys) exported from a KeyStore can be transported in a
number of ways, such as email or on diskette or flash drive.
The add-on also contains the ability to export and import
X.509 public keys from within the IM client.

B. Key Generation, Exchange and Authentication

Figure 5 - Key Generation and Exchange

CAIA Technical Report 041123A November 2004 Page 20 of 55

MSNServerInterface

InstantMessageGUI SortIM RSAManager

AESGen

AESCrypt

Keystore File

MSN Network

Send sorted IMs

Received IM

Analyse outgoing IMs/pass on
received IMs

Interfacing Prototype with TjMSN

Figure 6 – Interfacing Prototype with TjMSN

C. Protocol Processes in Detail

1. Interfacing Prototype with TjMSN

Figure 6 – Interfacing Prototype with TjMSN above shows the
main interfaces and classes used to provide encryption.
TjMSN classes are highlighted blue while the prototype
classes are yellow. The code of these classes can be found
in the appendix.

SortIM provides the main link between TjMSN and the

encryption code. When a new chat session is established,
TjMSN executes the InstantMessageGUI class, which
provides an area for sending and viewing messages (Figure 7 -

TjMSN Conversation Window). Additional code written into
InstantMessageGUI initialises SortIM at the same time, and
begins diverting messages sent or received.

When a message is to be sent, SortIM first analyses it

for a command code, before passing it back to
InstantMessageGUI which forwards it to MSNInterface.
Received messages are passed straight to SortIM before
being passed to InstantMessageGUI for display. This
occurs whether or not encryption is active. Information is
passed between the classes as plaintext strings.

Although SortIM is responsible for managing the

encrypted sessions, it does not have any knowledge of the
IM network protocols.

The classes RSAManager, AESCrypt and AESGen are

accessed as needed by sortIM, as is the user’s keystore file.
The encryption classes have no knowledge of either the

MSN Protocol or the encryption protocol and will simply
perform a function on a string of text.

Figure 7 - TjMSN Conversation Window

2. Protocol Functions

This section details the sequence of command codes
when performing the main functions of the prototype.

a) Activate Encryption

When a user requests and encrypted session, the
internal command codes “###@ 11 ” and “###@ 13 ” are
generated and sent as two successive instant messages.
These messages are detected by the SortIM before being
transmitted and are replaced with two new messages, the

CAIA Technical Report 041123A November 2004 Page 21 of 55

first being “###@ 12 +encrypted keys” and the second
being “###@ 14 +Signature”. That is, the initial code (11)
causes the software to generate the two AES keys, encrypt
these with the public key of the recipient and transmit with
the command code (12). The second code (13) causes the
software to transmit the digital signature associated with the
encrypted keys with the command code (14).

Upon receiving the first code (12), the keys are

decrypted and saved. When receiving second code (14) the
signature is verified and, if valid, the user is shown a dialog
box allowing them to accept or decline the request. If
accepted, the internal code (15) is generated to activate
encryption using the saved key and to transmit the request
accept code (16). When the requester receives the accept
code (16), encryption is activated.

The diagram below shows the internal and transmitted

codes during this sequence.

User 1 Transmitted User 2

Request

Encryption
###@ 11

###@ 13

Start session

###@ 12 +keys

###@ 14 +sig

###@ 16

Store keys

if signature
valid and

accept request,
###@ 15

Figure 8 - Activate Encryption

b) Encrypted Message Exchange
During an encrypted session the internal command code

“###@ 21 “ is added to the front of each message to be sent.
This informs the add-on that the message should be
encrypted. The text “###@ 22 +message“is encrypted, and
a MAC is produced from this ciphertext.

The receiver first checks the MAC and, if valid, will

decode the ciphertext. The command code (22) is then
recognised and the message text is passed to TjMSN for
display.

User 1 Transmitted User 2

Encrypt and
Send Message

###@ 21

Ciphertext+MAC

MAC ok? If yes
decipher and

display message

Figure 9 - Encrypted Message Exchange

c) End Encrypted Session
When either user decides to end the encrypted session,

the internal code (30) is generated. This in turn causes the
message “###@ 31 “ to be encrypted and transmitted. Upon
receiving the code (31), the internal code (32) is generated.
The (32) code de-activates the encryption and replies with
the code (33), used to confirm that encryption has been de-

activated. When the initiator receives the (33) command,
encryption is turned off and a confirmation message is sent
in plaintext.

User 1 Transmitted User 2

End Encryption

selected
###@ 30

Encryption Off

###@ 31

###@ 33

Encryption off
###@ 32

Figure 10 - End Encrypted Session

Encryption can also be ended simply by closing the

messaging window (all keys and configurations are
discarded).

d) Export Public Key Certificate

When “export public key” is selected by a user, the
internal code (41) is generated. This code causes the public
key associated with the configured private key alias to be
retrieved and converted into an X.509 certificate encoded in
base64. This is then transmitted as “###@ 42

+certificate”. Upon being received the certificate can be
named and is stored in the directory of TjMSN.

CAIA Technical Report 041123A November 2004 Page 22 of 55

IX. PROTOTYPE TESTING
As the prototype matured testing switched from ‘test

harness’ console programs to testing on the MSN Network.
This process involved observing the behaviour of the
prototype while undertaking regular IM conversations. The
section Software Demonstration shows the use of the
prototype under normal circumstances. The Performance
Considerations section contains analysis of the time delay
introduced in the process of encrypting and decrypting
messages on a number of systems.

A. Software Demonstration

1. Preliminary information

After being compiled, the modified TjMSN client used
for demonstrating the prototype is packaged into a single
Java Archive (JAR) executable. The file can be run from
either the command line using ‘java –jar filename.jar’
or by double clicking the icon from within an operating
system GUI. Java KeyStore files are placed in the same
directory as the JAR file.

A simple demonstration of was undertaken to show the

setup of an encrypted session and a small exchange of
encrypted information. The test was performed using two
Windows XP machines on the same LAN connected to the
MSN Messenger network.

Data traffic generated by the clients was captured using

the ‘Ethereal’ packet sniffing software. The filter string
[21]“tcp port 1863” was used so that only MSNP related
data was captured, allowing for easier inspection.

Excerpts of captured data are shown in ASCII format

rather than hexadecimal, as MSNP is an ASCII based
protocol [25]. As such, commands such as ‘new line’ (\n)
and ‘carriage return’ (\r) have also been omitted.
Information not directly relating to the encrypted exchange,
such as TCP/IP/Ethernet header fields have been omitted.
The captured information is shown from the perspective of
the principle who is receiving the request for an encrypted
session.

2. Demonstration

Initially a chat session was established by launching the
Instant Messaging GUI. A menu has been added to this
window allowing control over the various encryption
options. This menu is shown in Figure 11 - Encryption Menu.

Figure 11 - Encryption Menu

At this stage, any instant messages are exchanged in

plaintext. The following excerpt shows how the message
“hello” appears when received:

MSG captainrushrush@hotmail.com nigel 69
MIME-Version: 1.0
Content-Type: text/plain; charset=UTF-8

hello

Before an encrypted conversation can take place, both

users must configure the Java KeyStore that they are using,
using the ‘Certificate Setup’ option from the menu. The
dialog box for Certificate Setup is shown in Figure 12 - Enter

KeyStore Information Dialogue.

Figure 12 - Enter KeyStore Information Dialogue

Filename: The name of the KeyStore file
Password: The password used to access the KeyStore
Private Key Alias: The name assigned to the Private
Key to be used during encryption.

The KeyStore file is placed in the same directory as the

TjMSN JAR file. The details supplied are tested for validity
after “OK” is pressed.

Once both parties have configured the KeyStore, the

‘Activate Encryption’ option can be used to initiate key
exchange. Selecting this option opens the ‘Alias
Configuration’ dialog shown in Figure 13 - Enter KeyStore Alias

Dialogue.

CAIA Technical Report 041123A November 2004 Page 23 of 55

Figure 13 - Enter KeyStore Alias Dialogue

Local Alias: The alias for the private key stored locally
(a.k.a. Private Key Alias).
Remote Alias: The public key alias of the recipient of
the request. This key is used to encrypt the secret key.

Once “OK” is pressed, 256-bit and 128-bit AES keys

are generated, encrypted using the public key of the
recipient, and transmitted. An MD5 hash of the key is also
made, which is encrypted using the private key of the
requester and is sent immediately after the secret keys. The
encrypted keys, as received, are shown in the following
excerpt.

MSG captainrushrush@hotmail.com nigel 246
MIME-Version: 1.0
Content-Type: text/plain; charset=UTF-8

###@ 12 OA5rd8xeF/pt85Kqko4zeKrf0XeyM9acYYKOcFj
ZO9XVOsSKOcVzqCy7FyNeL9pB8qfBtIqQT6KeO4tgqpd+2Y
aJLoyzpOgTGlHZuS1xJJOMZSRkqk3G+9as9b5RAr1Pkvphf
Ped9R+SZaQ7oA6oadd1akhBO8HPsRuX9iMJ5dg=

It is important to note the MIME header of the

incoming message. The “content-Type: text/plain”
signifies that this information has been transmitted as a
standard message. The first line simply indicates the MS
Passport of the sender and their ‘nickname’.

The code at the beginning of the payload is recognised

by the software as being encrypted AES keys. The string is
decrypted and the keys are saved as key objects to be used if
the request is accepted. No other action is taken at this
point.

The following message immediately follows the first.

MSG captainrushrush@hotmail.com nigel 246
MIME-Version: 1.0
Content-Type: text/plain; charset=UTF-8

###@ 14 5C5iXd/NHGCDQefBrnZ8eSx9qXQcC7AvEX+or9v
WqUdQ0JXRro/fzzsoT2Ynr+OfD3nAhfznAspjqf+OMbN/qI
FwqPxuMFDEp00icQnKQ9KFuGSsjFdK3TOmbaESyH1LoeGOK
CECnjmyT5y20jIiHY8SulKFaYNtVVJgxruT8VU=

It contains an MD5 hash of the keys encrypted with the

private key of the sender. The hash is decoded using the
public key of the sender and compared with an MD5 hash of
the previously decoded keys. If the hashes do not match, a
message is sent notifying the sender of this and the keys are
discarded. A successful hash will cause the dialogue box
shown in Figure 14 - Enable Encryption Session Dialogue to appear.

Figure 14 - Enable Encryption Session Dialogue

Answering ‘no’ or ‘cancel’ results in the key being

discarded and the requester being notified. Answering yes
results in the following message being transmitted:

MSG 3 N 70
MIME-Version: 1.0
Content-Type: text/plain; charset=UTF-8

###@ 16

This message, when received by the requester, will

inform them that the request has been accepted and will
place their client into encrypted mode. All communications
between the clients is now encrypted using the secret key.

For demonstration purposes, the message “hello, how

are you?” was sent. The following shows the data as
transmitted over the Internet.

MSG captainrushrush@hotmail.com nigel 106
MIME-Version: 1.0
Content-Type: text/plain; charset=UTF-8

Ns8K/4==5B5+RU3c/KNaDkuWr0/SWskVj78QHw6FniDjt6G
v3+U=

The (MAC) is first removed and a new MAC is

generated using the 128-bit key and the ciphertext. If the
MAC matches, the string is decrypted and the original
message is passed to the client. Replying to this message
with “good” produced the following output:

MSG 8 N 86
MIME-Version: 1.0
Content-Type: text/plain; charset=UTF-8

mt57KN==awNph3Yr3YO2EVcdGSreYg==

At this stage, any protocol control information is also

encrypted to prevent a third party from tampering with the
conversation by sending dummy commands.

To end an encrypted session, a user simply selects the

option from the menu. This sends a notification to the other
user and upon receiving acknowledgment the encryption is
de-activated. The users are notified in the message history
window that the encryption has been de-activated. The
following sequence shows the initial end encryption
command as received.

CAIA Technical Report 041123A November 2004 Page 24 of 55

MSG captainrushrush@hotmail.com nigel 94
MIME-Version: 1.0
Content-Type: text/plain; charset=UTF-8

Rg85aQ==Dbgyvh8q5yC0hPq/tnci0Q==

Encryption is then de-activated and the following

message is automatically sent in reply:

MSG 6 N 70
MIME-Version: 1.0
Content-Type: text/plain; charset=UTF-8

###@ 33

This message informs the other user that encryption has

been de-activated. The image below shows the messages
seen in the history window from the perspective of the
initiator.

Figure 15 - Encryption Deactivation Message

When receiving a public key exported by another user,
the following dialog box appears:

Figure 16 - Certificate Alias Dialogue

This is the name of the file in which the received

certificate is stored. Pressing cancel will discard the
received certificate. When ‘OK’ is pressed, the following
information appears in the received message window:

Figure 17 - Certificate Storage Confirmation

Although this certificate can now be imported and used

to decrypt information, it is highly recommended that the
users confirm the authenticity of the certificate by verifying

the certificate fingerprint over some out-of-band channel,
such as by telephone.

B. Performance considerations- Benchmarks
Encryption can be a mathematically intensive process

and thus a certain amount of CPU overhead is incurred as a
result of encrypting or decrypting a message. This overhead
is noticed as a time delay as the plaintext is converted to
cipher text.

Due to the near-realtime nature of instant messages, it

was important to observe the delay introduced by an
encryption process of the specifications used in the add-on.
By recording the time-delay experienced on a number of
different systems it is possible to predict the approximate
performance on a given configuration. This in turn can
indicate the baseline configuration for tolerable
performance.

1. Benchmark Design

To simplify the testing process it was decided that the
benchmarks should consist of standalone Java console
applications. This allowed for easy installation and testing
on various machines and did not require an active internet
connection.

The java classes used to perform the encryption in the

benchmarks were the same classes used in the final
implementation of the software. This was done to ensure
that the results provided would reflect the time delay
experienced using the actual software. Special ‘test
harness’ classes were written to access the encryption
functions, provide ‘dummy’ information and to perform
timing.

2. Limitations due to Clock Time Granularity

The method System.currentTimeMillis(); located in
java.lang.System was used to time the length of the
various operations. As its name suggests, this method
returns the time of the system accurate to three decimal
places. The time elapsed was recoded by calculating the
difference between the time obtained before and after an
operation was called.

A limitation of this method is that the accuracy of the

time obtained is dependant on the Time Granularity [22] of
the system clock. Time granularity can be defined as the
time interval that elapses between successive updates of the
system clock. It may also be described as the effective
resolution of the system clock. This interval varies between
operating systems and different configurations of the same
operating system. Time granularity causes timing
inaccuracies for very short periods of time System Clock
Granularity.

Therefore, to increase the accuracy of the

measurements, it was necessary to extend the length of the
operations being timed. This was done by placing the

CAIA Technical Report 041123A November 2004 Page 25 of 55

operation in a loop and dividing the resulting time by the
number of loops performed.

The results obtained provide an approximate guideline

to of prototype performance.

3. Test Machines

The benchmarks were run on a number of different
systems that might typically be found in an office and also
on a significantly outdated system for comparison. This
included both desktop and portable systems. All machines
were tested using the J2SDK 1.4.2 with the Bouncy Castle
Provider and ‘unlimited strength’ US Export Policy
installed.

System A AMD Athlon XP2400+

512MB RAM
Windows XP Pro SP1

System B Apple iBook G4 800Mhz
384MB RAM
Apple OS 10.3.5

System C Intel Pentium M 1.4Ghz
256MB RAM
Windows XP Home SP1

System D Intel Celeron 400Mhz
256MB SDRAM
Windows 2000 Pro SP1*

System E Intel Pentium 4 2.66Ghz
512MB RAM
Windows 2000 Pro SP3

Table 2 - System Properties

The benchmark was run on each machine three times,
with the average of these three results being shown in the
graphs which follow. The complete table of results can be
found in System Clock Granularity.

4. AES Benchmark

The AES benchmark tested the three symmetric key
functions used by the add-on, those being key generation
and encryption/decryption in CBC mode. Early trials found
the encryption and decryption process taking less than
16ms, so a loop was used to increase the time interval
between polling the system clock. The number of loops
used was 50,000.

Two different length strings were used in the

benchmark, simulating a short sentence (58 bytes) and a
longer sentence (108 bytes) that would be typical of an IM
conversation. An example of the program output is shown
in [Figure 18]. Although capable of generating an AES key,
the benchmark would not run correctly on the MAC OSX
system, thus AES results for the iBook have been omitted.

Figure 18 - AES Testbench Example

a) Key Generation

The following graph Figure 18 - AES Testbench Example
shows the average time taken for each system to generate
the AES key. This operation was not looped.

 AES Average Tme Key Generation

0

50

100

150

200

250

300

350

System A System C System D System E

ti
m

e

(m
s

)

Figure 19 - Average Time for AES Key Generation

Intel processors have a notable speed advantage in
generating AES keys, as these results show. Although
System D did not show a high average performance, the
complete results tables show that on two of three occasions
it was able to generate the key at roughly the same speed as
System A.

b) AES Encryption Functions

The following graphs show the average of the results
obtained from the AES benchmark. Each operation was
looped 50,000 times.

CAIA Technical Report 041123A November 2004 Page 26 of 55

Encrypt AES 58-Byte String

0.000

0.005

0.010

0.015

0.020

0.025

System A System C System D System E

ti
m

e
(m

s
)

Figure 20 - AES Encryption with 58-byte String

Encrypt AES 108-Byte String

0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

0.016

System A System C System D System E

ti
m

e
(m

s
)

Figure 21 - AES Encryption with 108-byte String

Decrypt AES 58-Byte String

0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

0.016

0.018

System A System C System D System E

ti
m

e
(m

s
)

Figure 22 - AES Decryption with 58-byte String

Decrypt AES 108-Byte String

0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

0.016

0.018

System A System C System D System E

ti
m

e
(m

s
)

Figure 23 - AES Decryption with 108-byte String

The results show that the AES encryption functions are

quite fast, even on the slowest machine used. For example,
System D took between 0.015ms and 0.020ms for
encrypting the 108 and 58 byte strings. The more modern
processors were able to stay below 0.006ms for all of the
operations. These times suggest that it is extremely unlikely
that users would notice any additional delay in the exchange
of messages due to the AES operations.

A conversation between two clients using a machine of

the specifications of System A might expect an additional
0.010ms of latency, a near instantaneous period of time.

5. RSA Benchmark

The RSA benchmark first generated an AES key (as the
message) before timing the following operations:

• Signing a message
• Encrypting message with a public key
• Decrypting message with private key
• Verifying a signature
• Encoding with private key
• Decrypting message with public key.

As asymmetric encryption is more processor intensive

than symmetric, the operations were looped 500 times.
Figure 24 - RSA Testbench Example shows the output of the RSA
benchmark program.

Figure 24 - RSA Testbench Example

CAIA Technical Report 041123A November 2004 Page 27 of 55

The following graphs show the result averages for the

RSA benchmark program. Although ‘encoding with private
key’ was included in the benchmark, a graph of the results is
not shown as this function is not specifically used on its
own by the prototype (it is used in combination with an
MD5 hash). The results are included in table form in
Benchmark Tables of Results.

RSA Average Time Sign

0.000

20.000

40.000

60.000

80.000

100.000

120.000

140.000

System A System B System C System D System E

ti
m

e

(m
s

)

Figure 25 - Average Time for RSA Signing

RSA Average Time Encode with Public Key

0.000

1.000

2.000

3.000

4.000

5.000

6.000

System A System B System C System D System E

ti
m

e

(m
s

)

Figure 26 - Average Time for RSA Encryption

RSA Average Time Decode with Private Key

0.000

10.000

20.000

30.000

40.000

50.000

60.000

70.000

80.000

System A System B System C System D System E

ti
m

e

(m
s

)

Figure 27 - Average Time for RSA Decryption (Private Key)

RSA Average Time Verify Message

0.000

10.000

20.000

30.000

40.000

50.000

60.000

70.000

80.000

System A System B System C System D System E

ti
m

e

(m
s

)

Figure 28 - Average Time for RSA Message Verification

RSA Average Time Decode with Public Key

0.000

0.500

1.000

1.500

2.000

2.500

3.000

3.500

4.000

4.500

5.000

System A System B System C System D System E

ti
m

e

(m
s

)

Figure 29 - Average Time for RSA Decryption (Public Key)

RSA functions took considerably longer than AES, as

expected. The most time consuming tasks were those
related to authentication, as signing and verifying messages
are both two-part processes. However, the results for the
signing and verifying benchmarks suggest that the main
cause of delay is not from the RSA algorithm itself but
through creating the MD5 hash.

For example, verifying a message requires that the

received ciphertext is decoded using the public key of the
sender, after which an MD5 hash is taken of the message for
comparison. The ‘decode with public’ graph shows the
decoding process to be relatively quick, with a time of
4.5ms for the slowest system. This would suggest that, on
the same system, a signature given for verification might
take roughly 5ms to decode and 70ms to create and compare
MD5 hashes.

‘Encode with private’ also supports this, as measured

private key encryption times occupy only a small percentage
of the total time taken to sign a message.

CAIA Technical Report 041123A November 2004 Page 28 of 55

By adding the results in terms of sequence-of-
occurrence it is possible to estimate the approximate delay
expected when using the RSA functions. For example, the
processing time required to initiate an encrypted session
between two machines of System D specifications would be
(including key generation time for the two AES keys):

Key generation: 586ms
Encode AES key with public: 5.6ms
Sign message: 114ms
Total: 412.6ms
Decode AES key with private: 4.3ms
Verify signature: 74.4ms
Total: 78.7ms

In this scenario, the time elapsed between one user

requesting an encrypted session and the other having the
option to accept or reject the offer is approximately 883ms
in addition to any network latency. While this may seem
like a long delay, the figure is approximately 271ms in
addition to network latency when using a relatively recent
system such as System A. The fast AES key generation
ability of recent Intel processors further reduces this time
delay.

It should be noted that the RSA functions are used only

at the beginning of an encrypted session, after which the
significantly faster AES encryption is used. In actual use,
the RSA-caused delay was found to be quite acceptable.

CAIA Technical Report 041123A November 2004 Page 29 of 55

X. DISCUSSION
A number of design constraints had to be considered

when trying to achieve a balance between information
security objectives and a practical solution. As IM is a near
real-time exchange of short messages, speed and message
size were critical issues.

When choosing cryptographic algorithms, an important

assessing factor become the speed at which the algorithm
could operate for the required level of security. A slow
algorithm would introduce a noticeable latency to the
conversation, while a fast but insecure algorithm would not
meet security requirements.

The most crucial factor, it turns out, was not the

encryption algorithms themselves but the speed and size of
the hashes used to authenticate the encrypted messages, as
shown in the performance testing. This compromise on
hashes can be seen in the use of CBC-MAC and MD5 in the
place of algorithms that are more secure, but unsuitable for
IM systems.

CBC-MAC, which gives 64-bit security, was used in

favour of the slower and larger HMAC, while MD5
provides a 64-bit hash at a greater speed than a more
desirable but larger hash such as SHA-256. While these
hashes are not the strongest solutions cryptographically,
they provide a practical balance between high security and
reduced size and delay.

Additionally, the cryptographic world is constantly
evolving and new algorithms became available later in the
design that would have been useful during the development
process. An alternative to using RSA was to use the Elliptic
Curve Cryptography (ECC) system [28]. ECC has the
advantage of having what is known as a ‘strong key’. This
means that a shorter ECC key would provide the same
security as a longer RSA key. For example, a 160-bit ECC
key would provide the same level of security as a 1024-bit
RSA key.

An algorithm with such small keys would significantly

reduce the amount of data transmitted during secret key
exchange, possibly reducing the number of steps required.
The code libraries used in the project did not include ECC
until late in the development stage when Java released
JDK5.0.

An issue that emerged later in the development stage

was that of user interface and user interaction. Originally
not given the same weighting of importance as technical
issues, it became apparent that the user interface and how
the user interacted with the prototype functions was also a
significant factor in protocol design.

Overall, when designing such a cryptographic system,

the importance of planning becomes apparent. Such
systems are only as strong as the weakest link, and the

group found that careful planning made work easier and
produced a more secure system.

CAIA Technical Report 041123A November 2004 Page 30 of 55

XI. RECOMMENDATIONS
The prototype was designed as an interim solution

while managers developed an IM usage policy or
implemented enterprise IMs. IM usage in the workplace has
greatly increased in prominence over the last several years,
and as such will likely receive more attention from
management in terms of policy and the integration of
enterprise IM solutions. Therefore, the lifespan of the
prototype is expected to be short.

This means that although there is room for

improvements can be made with the prototype, some
elements are sufficient to last over the expected lifespan of
the application.

For example, the lifespan of AES is expected to be

about 10-20 years [6]. AES was standardised at the end of
2001, so the lifespan of AES is expected to surpass that of
the prototype. Therefore, at this point in time, there is no
need to consider replacing AES.

There are, however, a number of improvements that

can be made in the short term. The tradeoffs mentioned in
the Discussion section need to be further evaluated, taking
into account recent changes in cryptographic code libraries.
For example, replacing RSA with ECC might be a
consideration as it reduces the key length used.

The current use of MD5 and CBC-MAC, while

sufficient, is not ideal. A more comprehensive analysis of
hash and MAC algorithm combinations to find an optimal
balance between security, speed and size would be part of
further development on the prototype.

A more exhaustive test of the Sun PRNG would also be

undertaken. Finding a good source of randomness is crucial
when generating the secret keys used for message
encryption. Further tests on the PRNG would provide an
indication of its long-term viability.

The method by which the public keys are exported

could be made more secure by adding authentication
functionality. Currently, when Alice and Bob exchange
public keys, it is done so over an insecure channel.
Although public keys can be known by anyone, Eve can still
cause difficulties by intercepting the public key and
replacing it with one that Eve had generated.

A GUI improvement would be to provide an indication
to the user as to whether they are currently in an encrypted
conversation or not. This was attempted during the
development but the group was unable to integrate such a
function consistently as there are several bugs in the TjMSN
code.

Lastly, simplified key generation and management,

perhaps through the inclusion of a dedicated GUI tool,
would provide an easy way for users to manage their

asymmetric keys, as the current console-based method is not
user-friendly.

CAIA Technical Report 041123A November 2004 Page 31 of 55

XII. CONCLUSION
Instant messaging has expanded greatly from its

humble beginnings as an Internet gossiping application. IM
applications are now widely used in the workplace for many
purposes such as organising impromptu meeting and
obtaining real-time answers to work related queries.

A major problem with workplace IM usage is that

insecure public IM networks are more widely used than
more secure enterprise IM systems. In addition, managers
have yet to be proactive in developing an acceptable IM
usage policy or considering enterprise IM.

The concept behind the prototype was that it would be

used as a short-term solution to the current security
problems that public IM usage in the workplace posed.
Additionally, the context of use that was focused on was for
small companies that did not have the monetary funds or
technical resources to consider alternative solutions, or
companies consisting of several people communicating over
the Internet. Several current solutions to the public IM
problem were identified, but must be purchased and thus do
not provide for the context that was focused on.

The solution that was decided upon was to design and

develop an IM add-on that implemented information
security objectives that would not adversely affect any IM
functionalities. To do this, some tradeoffs were made in
terms of level of security and IM operational characteristics.
These solutions still provided the level of security required,
though.

Testing found that the prototype was able to function
well in the manner designed, and performed all functions as
expected. The speed at which encrypted messages were
exchanged was in fact faster than expected and the
prototype did not negatively affect the real-time
characteristic of IM applications. Recent cryptographic
code library updates to include algorithms such as ECC also
provide new avenues of refining and improving the
prototype.

Overall, the prototype was able to demonstrate the

plausibility of encryption over a public IM network, and
with additional testing and development, could provide
simple and free cryptographic solution.

CAIA Technical Report 041123A November 2004 Page 32 of 55

XIII. REFERENCES
[1] Blue Coat Systems, Inc, “Establishing an Internet Use

Policy for Instant Messaging” Whitepaper,
http://www.bluecoat.com, 2004 (as of June 3rd 2004)

[2] Websense, “Key Internet Usage Statistics”,
http://www.websense.com/company/news/stats.php

[3] H. de Vos, H. ter Hofte, H. de Poot, “IM [@Work]
Adoption of Instant Messaging in a Knowledge Worker
Organisation”, Telematica Instituut, 2004 (as of June
3rd 2004)

[4] National Institute of Standards and Technology,
“Special Publication 800-57: Recommendation for Key
Management”, June 2003

[5] N. Ferguson, B. Schneier, “Practical Cryptography”,
Wiley Publishing Inc., 2003

[6] A. Menezes, P. van Oorschot, S. Vanstone, “Handbook
of Applied Cryptography”, CRC Press, 1996

[7] BBC h2g2, “Basic Cryptanalysis”,
http://www.bbc.co.uk/dna/h2g2/alabaster/A613135 (as
of June 3rd 2004)

[8] National Institute of Standards and Technology, “FIPS-
PUB-147: Advanced Encryption Standard (AES)”,
November 2001

[9] National Institute of Standards and Technology, “FIPS-
PUB-196: Entity Authentication using Public Key
Cryptography”, February 1997

[10] A. Berent, “Advanced Encryption Standard by
Example”,
http://www.abisoft.net/documents/AESbyExample.htm,
(as of November 21st 2004)

[11] N. Furguson, “The AES Block Cipher”,
http://th.informatik.uni-mannheim.de/
people/lucks/papers/Ferguson/AEScipher.ppt, (as of
November 21st 2004)

[12] L.Dobrow, "Study: IM Soaring Among Adults, But At-
Work Usage Less Than Expected",
www.mediapost.com/dtls_dsp_news.cfm?newsID=267
165, Thursday, Sep 02, 2004 (as of November 21st
2004)

[13] RSA Laboratories, "Frequently Asked Questions About
Today's Cryptography, Version 4.1",
http://www.rsasecurity.com/rsalabs/node.asp?id=2152,
2004 (as of November 21st 2004)

[14] E. Isaacs, "A Closer Look at Our Common Wisdom",
ACM Queue 1(8), November 2003

[15] The Legion of the Bouncy Castle,
http://www.bouncycastle.org, (as of November 21st
2004)

[16] Class Secure Random,
http://java.sun.com/j2se/1.4.2/docs/api/java/security/Se
cureRandom.html, (as of November 21st 2004)

[17] Class CBCBlockCipherMac,
http://www.bouncycastle.org/docs/docs1.4/index.html,
(as of November 21st 2004)

[18] Ethereal, www.ethereal.com, (as of November 21st
2004)

[19] P. Kumar, “Cryptography with Java”,
http://www.informit.com/articles/article.asp?p=170967

&seqNum=11, May 28 2004 (as of November 21st
2004)

[20] KeyTool - Key and Certificate Management Tool,
http://java.sun.com/j2se/1.3/docs/tooldocs/win32/keyto
ol.html, (as of November 21st 2004)

[21] Ethereal help - 4.5 Filtering while capturing,
http://ethereal.planetmirror.com/docs/user-
guide/ChCapCaptureFilterSection.html, (as of
November 21st 2004)

[22] Class System,
http://java.sun.com/j2se/1.4.2/docs/api/java/lang/Syste
m.html#currentTimeMillis(),(as of November 21st
2004)

[23] KeyStore Explorer,
http://www.lazgosoftware.com/kse/, (as of November
21st 2004)

[24] Portecle, http://portecle.sourceforge.net/, (as of
November 21st 2004)

[25] J. Ly, N. Williams, “Secure Public Instant Messaging
(IM) at Work”, July 2004

[26] CryptoHeaven, http://www.cryptoheaven.com, 2004 (as
of November 21st 2004)

[27] Top Secret Manager (TSM),
http://www.encrsoft.com/products/tsm.html, 2004 (as
of November 21st 2004)

[28] V. Kumar, S. Doraiswamy, Z. Jainullabudeen, "Elliptic
Curve Cryptography", March 31 2004

CAIA Technical Report 041123A November 2004 Page 33 of 55

XIV. APPENDICES
A. Cryptographic Primitives

Cryptographic algorithms can be grouped into classes
known as cryptographic primitives. There are three
primitives: unkeyed, symmetric keyed and asymmetric
keyed.

1. Unkeyed Primitives

Unkeyed algorithms do not use any keys in the
generation of their output. An example of this type of
algorithm is arbitrary length hash functions, the main
subclass of unkeyed algorithms. Hash functions generate a
hash value known as a “hash” or “message digest”. The
input of a hash function is just the message to be hashed.
Hash functions are used in are one of the most versatile
cryptographic algorithms and are used for many purposes
such as being part of digital signature and key establishment
schemes.

Other types of unkeyed algorithms include one-way

permutations and random sequences. Unlike hash
functions, these functions on their own do not provide any
sort of cryptographic utility, however they can be
implemented as part of the mathematical computations
involved in other cryptographic algorithms.

Figure 30 - Unkeyed Cryptographic Primitives

2. Symmetric Key Primitives

Symmetric key algorithms use a single key as one of its
inputs to manipulate data. The keys used in these functions
are shared only with authorised entities and kept secret from
everyone else. Hence, such algorithms are also known as
secret key algorithms.

Figure 31 - Symmetric Key Cryptographic Primitives

Symmetric key algorithms have numerous applications
such as providing confidentiality, data integrity and
authentication as well as form part of a key establishment
process.

There are two major types of symmetric key

algorithms: Message Authentication Codes (MACs) and
symmetric key ciphers. The primary purpose of MACs is to
provide data origin authentication. MACs are also able to
detect message tampering, thus providing data integrity
checks. A MAC function takes a secret key and an arbitrary
sized message and generates a fixed sized MAC value. This
MAC value is sent with the encrypted message. The
receiver generates a MAC value of the encrypted message
and checks to see whether it matches the MAC value that
was sent with the message. If there is a match, then the
message has not been tampered with.

Symmetric key ciphers can be further broken down into

to classes: stream ciphers and block ciphers. Block ciphers
operate by breaking up an arbitrarily sized plaintext
message into fixed sized blocks. These blocks are
encrypted one at a time. There are three main classes of
block ciphers: substitution, transposition and product
ciphers. Substitution block ciphers substitute symbols or
groups of symbols with other symbols or groups of symbols
within a block. Transposition ciphers perform permutations
on the symbols within a block. Alone, both substitution and
transposition ciphers provide low levels of security. To
overcome this, the operations of substitution and
transposition ciphers are combined. This is what a product
cipher is.

Stream ciphers can be thought of as a type of block

cipher whereby the block size is one. They operate quicker
than block ciphers and have the advantage of not
propagating transmission errors. The main disadvantage of
stream ciphers is that although stream cipher theory has
been studied intensively, most stream ciphers implemented
in current systems are proprietary and therefore secret. This
leads to a lack of official documentation and standardised
code libraries for stream ciphers.

3. Asymmetric Key Primitives

Asymmetric key algorithms use a set of two related
keys known as a key pair. A key pair consists of a public
key and a private key. This is why asymmetric key
algorithms are also known as public key algorithms. A
private key is only known to the entity that owns the key
pair whereas a public key can be known to anyone,
regardless of whether they are authorised by the owner
entity. The important point is that the relationship between
the public and private keys is such that the private key
cannot be ascertained through knowing the public key.

An advantage of such algorithms is that the key

exchange does not have to be done over a secure channel.
However, it is necessary to authenticate the public keys

CAIA Technical Report 041123A November 2004 Page 34 of 55

through data origin authentication to provide assurance that
the owner of the public key is the intended communication
partner. This is done through key establishment techniques,
such as the one outlined in VI.E.

Asymmetric key algorithms are normally used in

calculating digital signatures, establishing cryptographic
material and for authentication schemes.

Figure 32 - Asymmetric Key Cryptographic Primitives

CAIA Technical Report 041123A November 2004 Page 35 of 55

B. Advanced Encryption Standard (AES)
The Advanced Encryption Standard (AES) is a US

government standardised block cipher. It was standardised
through NIST, who had asked for submissions from the
cryptographic community for a new block cipher algorithm.
Out of the 15 submissions, the Rijndael algorithm was
chosen to become AES. The Rijndael algorithm specifies a
symmetric block cipher that processes block lengths of 128
bits using symmetric keys with sizes of 128, 192 or 256 bits.
Rijndael was designed to handle other block sizes and key
lengths, however these were not implemented as part of the
AES standard.

One round of AES encryption is shown in Figure 33 - One

Round of AES. The plaintext message is broken into blocks of
128 bits. Each block is encrypted separately. AES consists
of 10-14 rounds, with each round using a round key derived
from the symmetric key and one block of the plaintext
message. The number of rounds depends on the size of the
key. Each round can be thought of as a weak block cipher.

Figure 33 - One Round of AES

The first step is to break the 128-bit plaintext block into
16 bytes. The 16 bytes can be thought of as a 4x4 matrix of
one byte (8 bits) called a State array. The round key is also

broken up in the same manner and then XOR with the State
array.

Each byte is used as an index into an S-box

(substitution box), which maps the input byte to an output
byte value. The transformation operation used in this step is
a non-linear byte transformation that operates independently
on each input byte. The S-boxes used are identical and its
contents are publicly known (Figure 34 - S-box Used in AES

Encryption).

The State array is then put through a row shifting

transformation. Each row, other than the first row, is shifted
cyclically over an offset. The offset depends on the row
number. For example, the first row is row number 0, so it is
not shifted. The second row is row number 1, so it is
cyclically shifted by one position.

The final step is to perform a mixing transformation on

the State array. Each column is treated as a four term
polynomial and multiplied by a fixed polynomial.

CAIA Technical Report 041123A November 2004 Page 36 of 55

This process is repeated for 10-14 rounds. In the
final round, instead of the mixing transformation, the round
key is XOR once again with the State array. This makes the
algorithm reversible during decryption. The total number of
rounds depends on the size of the key. Table 3 - Key-Block-

Round Combinations lists the number of rounds in relation to
the key size.

 Key Length
(in words)

Block Size
(in words)

Number of
Rounds

128-bit
key

4

4

10

192-bit
key

6

4

12

256-bit
key

8

4

14

Table 3 - Key-Block-Round Combinations

Each of the transformations are invertible, therefore
similar steps can be used to perform the decryption, but in a
reverse order. The decryption process consists of an initial
round plus nine rounds of transformations, totalling in the
ten rounds required for a 128-bit key. The initial decryption
round consists of the following steps:

1. XOR round key
2. Inverse byte substitution transformation
3. Inverse row shifting transformation

The next nine rounds consists of the following steps:

1. XOR round key
2. Inverse mixing column transformation
3. Inverse byte substitution transformation
4. Inverse row shifting transformation

The inverse byte substitution involves using an S-box
with the contents being the inverse of the contents of the S-
box used in encryption (Figure 35 - Inverse S-box Used in AES

Encryption). The inverse row shifting operation involves the
same step as that in the encryption transformation, except
that the rows are shifted to the left. The first row in the
multiplication matrix is changed for the inverse mixing
column transformation. Other than that, the mixing column
transformation executes in the same manner as in the
encryption process [10].

1. Key Expansion

To generate the round keys from the symmetric key, a
method called the key expansion is used. The key
expansion operation is performed before encryption begins.
The symmetric key must be expanded to be long enough to
provide enough keying material for the multiple round keys.
Each round key is made up of a different section of the
expanded symmetric key. The number of round keys need
to be one more than the number of rounds as the round key
is used twice in final round. Therefore, the total number of
bytes required is:

16 x (number of rounds + 1)

When a 128-bit (16 byte) key is used, the expanded key

must be 1408 bits (176 bytes) long. The symmetric key
always makes up the first bytes in the expanded key. So for
a 16 byte key, the first 16 bytes of the expanded key is the
symmetric key.

CAIA Technical Report 041123A November 2004 Page 37 of 55

Figure 34 - S-box Used in AES Encryption

Figure 35 - Inverse S-box Used in AES Encryption

CAIA Technical Report 041123A November 2004 Page 38 of 55

C. Collision Attacks
A collision occurs when a function provides the same

output for two different input values. When a collision
occurs, it can possibly leak information to an adversary such
as what secret key is currently being used. Collision attacks
are a type of cryptographic attacks that take advantage of
the fact that there is a certain probability that collisions will
occur in a cryptographic system after a certain period of
time. There are two main types of collision attacks:
birthday and meet in the middle.

1. Birthday Attacks

Birthday attacks make use of the fact that collisions
occur in a shorter time period than would be expected. It is
named after the birthday paradox, whereby the probability
of two people having the same birthday out of a group of 23
people exceeds 50%. This is a high probability when the
fact that there are 366 possible birthdays is taken into
consideration.

An example of how this attack works is where a 64-bit

key is used for a particular operation, it is expected that
there are 264 (18 billion) possible key values to select from.
Therefore, it would seem that the attacker would have a
difficult time trying to figure out the key being used. In
actual fact, the attacker could expect to see the same key
being used after approximately 232 operations. If the
attacker can ascertain that the same key is being used, then
the system is susceptible to possible attacks, namely data
insertion of old messages from the attacker.

In general, if there are n different possible values, then

it is expected that the first collision will occur after
approximately √n random elements have been chosen. The
birthday bound, which is related to this hypothesis, defines
the fact that a collision is expected to occur after 2n/2
elements have occurred.

2. Meet in the Middle Attacks

A more common collision attack is the “Meet in the
middle” attack. The way this type of attack works is that
instead of waiting for a collision to occur, a set of keys can
be randomly generated by the attacker and used as a
reference when the attacker eavesdrops on a communication
exchange. For example, in a situation where a MAC is used
and the system uses the same first message to the user (such
as a welcome message or a confirmation request), the
attacker can randomly choose a set of keys and generate
MAC values for the first message using these keys. The
MAC values are stored in a table. In the event that the same
MAC value is sent over the channel the attacker is listening
in on, then it is highly probable that the key that is being
used in the communication exchange is the same key that
the attacker used to generate the MAC value.

This allows the attacker to insert any messages that the

attacker chooses to generate into the communication

exchange instead of just replaying old messages like with
birthday attacks. This makes meet in the middle attacks
more useful than birthday attacks. However, for both
birthday and meet in the middle attacks, a collision can be
expected to occur within the same number of elements.

CAIA Technical Report 041123A November 2004 Page 39 of 55

D. Cipher Block Chaining (CBC)
The Cipher Block Chaining (CBC) mode is the most

commonly used mode in current systems. It is a type of
confidentiality mode where the encryption method involves
“chaining” plaintext blocks to previous cipher text blocks.

Figure 36 - CBC Encryption and Decryption

The CBC encryption function (Figure 36 - CBC Encryption

and Decryption) uses an input of the previous ciphertext block
ci-1, where i ≥ 0. This is then XOR with the plaintext block
pi. The result is inputted into the cipher function E (in the
case of the project, E is AES) to produce the ciphertext ci.
As each CBC encryption cycle requires the previous
ciphertext as an input, the encryption operation cannot be
processed in parallel.

The CBC decryption function uses the ciphertext ci as

the input into the inverse cipher function E-1. This is then
XOR with the previous ciphertext block. The operation
produces the output pi’ which should be equal to the
plaintext message pi. As the input of the decryption
function (the ciphertext ci) is immediately available, there
can be multiple decryption operations processed in parallel.

Figure 37 - CBC Encryption and Decryption for the First Cycle

In the case of the first block, as there is no previous
ciphertext block, an IV is used instead. Therefore, c0 is the
IV.

The advantage of CBC is that it does not have a
problem when encrypting two plaintext blocks that are the
same. In ECB, if two plaintext blocks are the same, then the
resultant ciphertext block will also be the same. CBC
solves this problem by chaining the previous ciphertext
block to the plaintext block, so that the plaintext blocks that
are the same will be chained to different ciphertext blocks.

For the plaintext message to be recovered successfully,

the sender and receiver need to have their IVs synchronised.
The IVs used should not be the same as the problem with
ECB is introduced for the first block of each message. As
messages often start in a similar or identical manner, the
message blocks would be the same (or similar). If the same
IV is used then it is possible for the same ciphertext block to
be generated. This provides information to the attacker.
How IVs can be generated is discussed in Initialisation
Vector (IV) Generation Methods.

CAIA Technical Report 041123A November 2004 Page 40 of 55

E. Initialisation Vector (IV) Generation Methods
There are several ways to generate the IV value used in

CBC. These include counter IV, random IV and nonce-
generated IV.

1. Counter IV

A counter IV uses zero for the first message, one for
the second message and so on. The main disadvantage of
using this method is that numbers in sequence have a similar
sequence when represented in binary format. As many
messages start in a similar manner, the IVs could cancel out
the minor differences between the starting messages, as the
IVs are also similar. For example, if the IVs differ in
exactly one bit and the start of two messages only differ in
one bit then the ciphertext blocks may be identical due to
the IVs cancelling out the differences. Even if the
differences are not cancelled out, if the differences are only
minor, an attacker can still use cryptanalysis to make
presumptions about the messages being exchanged.

2. Random IV

Another solution to the IV problem is to use a random
IV. As stated in the CBC section, the sender and receiver
need to have their IVs synchronised to successfully recover
the plaintext message. Consequently, the first ciphertext
block (c0) is the random IV value. Because the first block
does not contain any plaintext, the resultant ciphertext block
would be one block longer than the plaintext, with the extra
block being the random IV block. This is a major
disadvantage if the messages are short as it results in
significant message expansion. Another disadvantage is
that the encryption algorithm will need a source of
randomness, which requires a lot of overhead if a good
random generator is to be implemented.

3. Nonce-generated IV

The term nonce is derived from the phrase number used
once. The nonce is a unique number that is not used twice
with the same encryption key. The nonce is normally a
message number. Since most communication systems
require a message number to be implemented, using a nonce
will not create any message overheads. The IV is then
generated by encrypting the nonce with the block cipher
implemented in the system.

The following steps describe how a nonce-generated IV

is used in CBC:

1. A message is assigned a message number. Normally
the message number is generated by a counter, starting
at zero.

2. The message number is used as the unique nonce.
3. The IV is generated by encrypting the nonce with the

block cipher (in the case of the project, the block cipher
is AES).

4. CBC mode is then used to encrypt the message, using
the nonce-generated IV.

5. Additional information is added to the ciphertext, such
as attaching the message number to the ciphertext. This
is to ensure that the receiver can generate the same
nonce. The IV is not sent with the message.

6. Ensure that the receiver accepts one message at a time
by rejecting any messages with a message number that
is less than or equal to the message number of the last
received message.

CAIA Technical Report 041123A November 2004 Page 41 of 55

F. RSA
The RSA algorithm was developed by Ronald L.

Rivest, Adi Shamir, and Leonard Adleman in 1977 and
published in 1978. It is a commonly used cryptosystem that
provides both encryption and digital signature
functionalities.

1. Key Generation

The following steps outline the basic operations
involved in generating an RSA key pair.

1. Find two large (say, between 1024 and 4096 bits) prime

numbers, p and q. Use these numbers to compute n =
pq.

2. Choose an exponent e where e is greater than one, an
odd number and less than n. Also, e and (p-1)(q-1)
need to be such that they do not have any prime factors
in common.

3. Calculate the multiplicative inverse of e, known as d.
This can be done through finding an integer x that
produces an integer result for the equation d = (x(p-
1)(q-1)).

The public key is the pair (n, e). Hence, e is known as the
public exponent. The public key can be known by anyone
as there is currently no known way to derive d, p or q
through knowing the public key (n, e). The private key is d.
Consequently, d is known as the private exponent. It is
imperative that d be kept secret from other entities.

2. Public Key Encryption

The encryption function for RSA is c = me mod n, where
c is the ciphertext and m is the plaintext message. Both the
ciphertext and the plaintext are positive integers. The value
of m must be less than n. It can be seen that for RSA
encryption, the public key is used.

For RSA decryption, the function is fundamentally the

same, except that the private key is used instead of the
public key. The decryption function is p = cd mod n.

3. Digital Signatures

Generating digital signatures in RSA involves the same
calculations used in encrypting and decrypting. To sign a
plaintext message, the entity that owns the private key
computes a signature s = m1/e mod n. The signed message is
therefore (m, s). This signature can be verified by any entity
that knows the corresponding public key. This is done
using the function se = m mod n.

CAIA Technical Report 041123A November 2004 Page 42 of 55

G. KeyTool
1. About Key Tool and Important Terms

KeyTool is a Java command line utility that is used to
create, manage and secure asymmetric keys and certificates
in Java KeyStore files. Public keys can be exported from
the KeyStore as one of a number of certificate types. Public
keys of other persons can be imported into a KeyStore using
the KeyTool utility.

There are a number of important terms in regards to

items and processes when using the Java KeyTool. An alias
refers to the name given to a particular item, such as a
public key, within the KeyStore. A store is the name used
to access the keystore, which is the name of the keystore
file. A provider is the cryptographic suite that provides the
encryption algorithms for the keystore.

Although the following sections provide some examples

of using keytool via command line, a number of programs
exist that provide a graphical interface for creating and
editing keystore files. These programs are the KeyStore
Explorer [23], which can be purchased from $US30 for a
single user license, and Portecle [24] can be downloaded for
free.

2. Generating RSA Key Pairs

The Bouncy Castle Cryptographic Provider was used to
generate the RSA keys required for encryption. This
provider was used as the Sun Provider as in JDK1.4.2 did
not contain support for the RSA algorithm.

To generate an asymmetric key-pair the following

command was entered from the console:

keytool -genkey -alias <alias> -keyalg RSA -
keysize 1024 (or 2048) -sigalg MD5withRSA -
keystore <storename>.ks -storepass <password> -
storetype jks

Keytool then provides prompts for additional

information, such as the name of the key-pair owner and the
expiry date of the key. This information can also be entered
in the initial command if desired.

3. Importing X.509/CER Files

Public keys are exchanged as specially encoded
certificate files. These files can be exchanged via disk,
email or via the ‘export public key’ function in the add-on.
If using email or the export function, it is important to verify
the fingerprint of the certificate. See KeyTool for an
example of how this is done.

To import a key file, for example “alicecert.cer” into

Bob’s keystore, the following command would be used:

Keytool –import –alias alice –file alicecert.cer –
keystore bobstore –storepass password

A prompt then asks whether this certificate is to be
trusted, to which ‘yes’ is entered. The public key is now
stored within Bob’s keystore with the alias “alice”.

4. Verifying Received Certificate

It is recommended that public key certificates be
exchanged in person using a diskette rather than through the
export function of the add-on. If this is not possible,
however, it is necessary to manually check the MD5
fingerprint of the received key to ensure it has not been
subject to any man-in-the-middle attack.

After importing the certificate, the fingerprint can be

obtained by typing the command:

Keytool –list –keystore <storename> -storepass
<password>

This lists the certificates contained within the keystore

and their MD5 fingerprint. Imported certificates will appear
as ‘trustedCertEnrty’, while private keys will appear as
‘keyEntry’. The example below shows the keyEntry
fingerprint for a certificate.

nigel, 3/09/2004, keyEntry,
Certificate fingerprint (MD5):
41:3A:0E:27:E1:A5:E2:F0:07:2B:EC:D2:88:03:48:2E

The received public key certificate contains the same

fingerprint as the keyEntry certificate. Therefore, the
fingerprint should be confirmed (over the phone, for
instance) by comparing the fingerprint of the received
certificate against the certificate contained in the original
keyEntry.

CAIA Technical Report 041123A November 2004 Page 43 of 55

H. System Clock Granularity
For example, a Windows XP system may have a clock

granularity of 15-16ms and would report the following
times if it were polled on a 10ms basis.

System Time Poll Interval
06:05:14.000 0ms
06:05:14.000 10ms
06:05:14.015 20ms
06:05:14.030 30ms
06:05:14.030 40ms
06:05:14.046 50ms
06:05:14.060 60ms

Table 4 - System Clock Granularity

In the above example, the clock granularity is larger
than the polling interval. Thus, when the first 10ms interval
has elapsed, the clock is still reporting the time
06:05:14.000 – it has yet to be updated. After 20ms have
elapsed, the clock has been updated to reflect a time of
06:05:14.015. After 30ms the polling interval falls in line
with the clock update, and the time is reported accurately.
At 40ms, the clock has yet to refresh, thus the time is still
reported as 06:05:14.030. 50ms shows that the interval
was 16ms, as the reported time is 06:05:14.046. The final
poll at 60ms also coincides with the clock update, giving a
system time of 06:05:14.060.

As can be seen, the accuracy of currentTimeMillis()

can vary significantly over short timed intervals. It could be
said that the margin of error for the system above would be
± 16ms. For short period of time, such as 30ms, ± 16ms
would represent a margin of error of over 50%. Intervals
less than 15ms would simply appear as 0ms.

In contrast, ± 16ms of a 300ms operation roughly

represents a 5% margin of error, which is much more
acceptable than 50%. Therefore, where possible, all timed
functions were placed into a loop to decrease the margin of
error and hence increase the accuracy of the result.

CAIA Technical Report 041123A November 2004 Page 44 of 55

I. Benchmark Tables of Results
The following tables contain the results of each trial

conducted in the benchmarks. Adjusted figures indicate that
the total time has been divided by the number of loops,
giving the average time for an individual operation.

1. AES Benchmark Results

AES Key generation

System Time(ms)

110

100

A

110

30

31

C

30

661

110

D

110

80

30

E

20

Table 5 - AES Key Generation

AES 58-byte String, 50,000 loops

System Encrypt(ms) Decrypt(ms)

200 161

200 171

A

200 160

250 211

240 210

C

241 210

961 811

962 821

D

962 821

160 140

161 130

E

160 140

Table 6 - AES Encryption and Decryption of 58-byte String

AES 108-byte String, 50,000 loops

System Encrypt(ms) Decrypt(ms)

161 160

171 160

A

160 160

200 210

210 201

C

210 210

761 771

751 781

D

761 781

130 130 E

130 130

 130 130

Table 7 - AES Encryption and Decryption of 108-byte String

AES 58-byte String Adjusted figures

System Encrypt(ms) Decrypt(ms)

0.004 0.00322

0.004 0.00342

A

0.004 0.0032

0.005 0.00422

0.0048 0.0042

C

0.00482 0.0042

0.01922 0.01622

0.01924 0.01642

D

0.01924 0.01642

0.0032 0.0028

0.00322 0.0026

E

0.0032 0.0028

Table 8 - AES Encryption and Decryption Adjusted Figures (58-byte)

AES 108-byte String Adjusted figures

System Encrypt(ms) Decrypt(ms)

0.00322 0.0032

0.00342 0.0032

A

0.0032 0.0032

0.004 0.0042

0.0042 0.00402

C

0.0042 0.0042

0.01522 0.01542

0.01502 0.01562

D

0.01522 0.01562

0.0026 0.0026

0.0026 0.0026

E

0.0026 0.0026

Table 9 - AES Encryption and Decryption Adjusted Figures (108-
byte)

CAIA Technical Report 041123A November 2004 Page 45 of 55

2. RSA Benchmark Results

RSA Benchmark 500 Loops time in milliseconds

System Sign encode public decode private verify signiture decode public

11566 491 6640 7310 400

11496 491 6620 7260 390

A

11797 531 6670 7300 400

29952 1443 14381 15983 951

29688 1444 14382 15985 950

B

29664 1456 14362 15993 945

16053 751 10586 10895 641

15713 681 10044 10656 601

C

15472 681 9894 10666 591

56602 2844 32857 36102 2123

56632 2613 33098 37834 2233

D

59095 2955 34289 37624 2214

10946 531 7210 7831 430

10976 500 7231 7811 441

E

10913 521 7200 7882 441

Table 10 - RSA Benchmark Results (500 Loops)

RSA Benchmark adjusted time in milliseconds

System Sign encode public decode private verify signiture decode public

23.132 0.982 13.28 14.62 0.8

22.992 0.982 13.24 14.52 0.78

A

23.594 1.062 13.34 14.6 0.8

59.904 2.886 28.762 31.966 1.902

59.376 2.888 28.764 31.97 1.9

B

59.328 2.912 28.724 31.986 1.89

32.106 1.502 21.172 21.79 1.282

31.426 1.362 20.088 21.312 1.202

C

30.944 1.362 19.788 21.332 1.182

113.204 5.688 65.714 72.204 4.246

113.264 5.226 66.196 75.668 4.466

D

118.19 5.91 68.578 75.248 4.428

21.892 1.062 14.42 15.662 0.86

21.952 1 14.462 15.622 0.882

E

21.826 1.042 14.4 15.764 0.882

Table 11 - RSA Benchmark Results (Adjusted Figures)

CAIA Technical Report 041123A November 2004 Page 46 of 55

J. Selected Prototype Source Code
The source code in the following sections is from the main prototype java classes.

1. SortIM

/* This will take an Instant Message which has been given an escape sequence
 and identify the command code given to allow processing as appropriate. */

/*
 * sortIM.java
 *
 * Created on 25 April 2004
 */

package au.edu.swin.jn;

import com.tomjudge.TjMSN.*;
import com.tomjudge.TjMSNLib.*;

import java.io.*;
import java.util.*;
import javax.crypto.Cipher;
import javax.crypto.KeyGenerator;
import javax.crypto.spec.*;
import javax.crypto.*;
import javax.swing.*;
import java.security.Key;
import java.security.cert.*;

public class sortIM
{
 private String trimMessage;
 private String cmdCode;
 private String codedMsg;
 private String toEncode;
 private String toDecode;
 private String decodedMessage;

 private String storeName;
 private String storepass;
 private String aliasLocal;
 private String aliasRemote;

 private boolean sendReply;
 private boolean encryptionStatus;
 private boolean endEncryptSent = false;

 String AESkey = null;
 String CBCkey = null;
 String decodedPrivate;
 int messageCounter = 0;
 newAlias getAliasDialog;

// byte[] theKey = genKey();
 AEScrypt encrypter;
 AEScrypt decrypter;
 AESGen keyGen;
 RSAmanager test;

/* Command Code summery
*
* Code Function
* 11 Request encrypted session
* 12 Receive request for encrypted session
* 13 Acceptance of request
* 14 Recieve Acceptance
* 15 Send signature
* 16 Recieve signature
* 21 Message to be encrypted and transmitted
* 22 Message to be decrypted
* 23 Part 1 of split message for re-assembly and decryption
* 24 Part n of split message
* 25 Final part of split message

CAIA Technical Report 041123A November 2004 Page 47 of 55

* 30 End Session command
* 31 Recieve End Session command
* 40 Message part 1 of cert
* 41 recieve part one
* 42 cert message part 2
* 43 recieve part two
*/

 public sortIM(boolean status)
 {
 encryptionStatus = status;
 }

 public String sort(String aMessage) { //make a public variable for aMessage and use that for

decrypt?
 if (encryptionStatus)
 {
 if (aMessage.startsWith("###@ "))
 {
 cmdCode = aMessage.substring(5,7);

 if (cmdCode.matches("21"))
 {
 activeEncryption();
 toEncode = aMessage.substring(8);
 encrypter = new AEScrypt(AESkey, messageCounter); // also want to pass

messagecount to create the IV
 trimMessage = toEncode; //for history pane
 String ciphertext = encrypter.encrypt("###@ 22 " +toEncode); // Encrypt the

message for transmission

 codedMsg = encrypter.getMac(CBCkey, ciphertext)+ciphertext;
 messageCounter++; //increment the counter
 }

 else if (cmdCode.matches("30")) //sending
 {
 activeEncryption();
 trimMessage = "notice to de-activate encryption";
 encrypter = new AEScrypt(AESkey, messageCounter);
 String ciphertext = encrypter.encrypt("###@ 31 ");
 codedMsg = encrypter.getMac(CBCkey, ciphertext)+ciphertext;
 endEncryptSent = true;
 }
 else if (cmdCode.matches("33"))
 {
 if (endEncryptSent) {
 noEncryption();
 trimMessage = "encryption has been de-activated";
 sendReply = false;
 messageCounter = 0; }
 }

 }
 else
 {
 decrypter = new AEScrypt(AESkey, messageCounter); //(theKey, IV)
 String recievedMac = aMessage.substring(0,8);
 boolean result = decrypter.verifyMac(CBCkey, aMessage.substring(8), recievedMac);
 if (result) {
 decodedMessage = decrypter.decrypt(aMessage.substring(8));
 cmdCode = decodedMessage.substring(5,7); }
 else
 {
 decodedMessage = "###@ 22 Bad MAC message discarded";
 cmdCode = decodedMessage.substring(5,7);
 }
 messageCounter++;

 if (decodedMessage.startsWith("###@ "))
 {
 if (cmdCode.matches("22"))
 {
 activeEncryption();
 trimMessage = decodedMessage.substring(8); //decoded msg for display

CAIA Technical Report 041123A November 2004 Page 48 of 55

 sendReply = false;
 }
 else if (cmdCode.matches("31")) //recieving
 {
 noEncryption();
 trimMessage = null;
 codedMsg = "###@ 32 ";
 sendReply = true;
 messageCounter = 0;
 }
 }
 }
 }
 else
 {
 cmdCode = aMessage.substring(5,7);
 if (cmdCode.matches("11")) //request for encryption
 {
 noEncryption();
 trimMessage = "you have requested an encrypted session";
 keyGen = new AESGen();
 AESkey = keyGen.genKey();
 CBCkey = keyGen.getCBCKey();
 test = new RSAmanager(storeName, storepass, aliasLocal, aliasRemote); //to replace

with variables
 String encmsg = test.encodeMessagePublic(CBCkey+AESkey);
 codedMsg = "###@ 12 " +encmsg; //AESkey variable replaced by the result of public

key encryption

 }
 else if (cmdCode.matches("12")) //recieve request for enc
 {
 noEncryption();
 trimMessage = "wishes to start an encrypted session";

 test = new RSAmanager(storeName, storepass, aliasLocal, aliasRemote); //to replace

with variables
 decodedPrivate = test.decodeMessagePrivate(aMessage.substring(8)); //take off

cmdCode, decode and save AESkey
 AESkey = decodedPrivate.substring(24);
 CBCkey = decodedPrivate.substring(0,24);
 //no need for anything else, the ###@ 16 will directly follow
 sendReply = false;
 }
 else if (cmdCode.matches("13")) // sending a 13
 {
 //set the variable to say that encryption is enabled
 noEncryption();
 test = new RSAmanager(storeName, storepass, aliasLocal, aliasRemote);
 String signed = test.signMessage(CBCkey+AESkey);
 codedMsg = "###@ 14 "+signed;
 trimMessage = "awaiting confirmation";
 }
 else if (cmdCode.matches("14")) //recieving a 14
 {
 //set the variable to say that encryption is enabled
 noEncryption();
 test = new RSAmanager(storeName, storepass, aliasLocal, aliasRemote);
 test.verifyMessage(decodedPrivate, aMessage.substring(8));
 boolean theResult = test.verResult();

 if (theResult)
 {
 int r = JOptionPane.showConfirmDialog(null, "Enable encrypted session?");
 if (r == JOptionPane.YES_OPTION)
 {
 codedMsg = "###@ 15 ";
 trimMessage = null;
 sendReply = true;
 }
 else
 {
 codedMsg = "the request has been denied";
 trimMessage = "you denied the request";
 sendReply = true;

CAIA Technical Report 041123A November 2004 Page 49 of 55

 }
 }
 else
 {
 trimMessage = "signature did not match";
 codedMsg = "The signature did not match, request cancelled";
 sendReply = true;
 }

 }
 else if (cmdCode.matches("15")) //sending a 15
 {
 activeEncryption();
 codedMsg = "###@ 16 ";
 trimMessage = "Encryption activated";
 }
 else if (cmdCode.matches("16")) //receiving
 {
 activeEncryption();
 trimMessage = "request accepted. session encrypted";
 sendReply = false;
 }
 else if (cmdCode.matches("41")) //sending
 {
 RSAmanager rsaMan = new RSAmanager(storeName, storepass, aliasLocal, aliasRemote);
 codedMsg = "###@ 42 " +rsaMan.exportLocalCert();
 trimMessage = "you have exported your public key";
 }
 else if (cmdCode.matches("42")) //recieving
 { /* MUST CHECK TO ENSURE THAT KEYSTORE HAS BEEN CONFIGURED */

 try {
 byte[] dec = new sun.misc.BASE64Decoder().decodeBuffer(aMessage.substring(8));
 getAliasDialog = new newAlias(null, true);
 getAliasDialog.show();
 String userAlias = getAliasDialog.getNewAlias();
 if (userAlias != null) {
 /* READING IN AND CREATING THE CERT */
 ByteArrayInputStream bais = new ByteArrayInputStream(dec);
 BufferedInputStream bis = new BufferedInputStream(bais);
 CertificateFactory cf = CertificateFactory.getInstance("X.509");
 X509Certificate cert = null;
 while (bis.available() > 0) {
 cert = (X509Certificate)cf.generateCertificate(bis);
 }
 byte[] buf = cert.getEncoded();
 FileOutputStream os = new FileOutputStream(userAlias+".cer");
 os.write(buf);
 os.close();
 trimMessage = "the certificate has been saved as: " +userAlias +".cer. Use

keytool -import -alias <alias> -file <file.cer> -keystore <keystore> -keypass <keypass> to import the
file.";

 }
 else {
 trimMessage = "not imported";
 }

 }
 catch (Exception e) {
 e.printStackTrace();
 }

 }
 else if (cmdCode.matches("32"))
 {
 codedMsg = "###@ 33 ";
 trimMessage = "Encryption has been de-activated";
 }
 }
 return null;
 }

 public String getTrim()
 {
 return trimMessage;

CAIA Technical Report 041123A November 2004 Page 50 of 55

 }

 public String getCoded()
 {
 return codedMsg;
 }

 public void activeEncryption()
 {
 encryptionStatus = true;
 }

 public void noEncryption()
 {
 encryptionStatus = false;
 }

 public boolean getEncryptionStatus()
 {
 return encryptionStatus;
 }

 public boolean sendReplyMsg()
 {
 return sendReply;
 }

 public void setKeystore(String store_name, char[] store_pass)
 {
 storeName = store_name;
 storepass = new String(store_pass);
 }

 public void setAlias(String local_alias, String remote_alias)
 {
 aliasLocal = local_alias;
 if (remote_alias != null) {
 aliasRemote = remote_alias;
 }

 }
}

2. AESCrypt

/*
 * AEScrypt.java
 * This class looks after the creation of AES key, and also performs the
 * encryption and decryption of message. TODO: The IV should be obtained using
 * the supplied message number. (unless random IV is used)
 * Created on 9 September 2004, 13:21
 */
package au.edu.swin.jn;

import java.lang.*;
import javax.crypto.KeyGenerator;
import javax.crypto.spec.IvParameterSpec;
import javax.crypto.*;
import javax.crypto.spec.*;
import java.security.Key;
import java.security.NoSuchAlgorithmException;
import java.security.Security;
import java.security.*;
import org.bouncycastle.crypto.macs.*;
import org.bouncycastle.crypto.engines.*;
import org.bouncycastle.crypto.params.*;

/**
 *
 * @author nigel
 */
public class AEScrypt {
 Cipher ecipher;
 Cipher dcipher;
 Cipher IVcipher;

CAIA Technical Report 041123A November 2004 Page 51 of 55

 SecretKeySpec skeySpec = null;
 SecretKeySpec CBCSpec = null;
 IvParameterSpec ips;
 CBCBlockCipherMac macHash;
 boolean macResult;

 /** Creates a new instance of AEScrypt */
 public AEScrypt(String keyString, int messageCounter) {
 try {

 byte[] keyAgain = new sun.misc.BASE64Decoder().decodeBuffer(keyString); //base64 key string

to byte
 skeySpec = new SecretKeySpec(keyAgain, "AES"); //make a usable key

object from this

 ecipher = Cipher.getInstance("AES/CBC/PKCS7Padding","BC");
 dcipher = Cipher.getInstance("AES/CBC/PKCS7Padding","BC");
 IVcipher = Cipher.getInstance("AES","BC");

 String ivString = Integer.toBinaryString(messageCounter);
 byte[] iv = ivString.getBytes();
 IVcipher.init(Cipher.ENCRYPT_MODE, skeySpec);
 byte[] encIV = IVcipher.doFinal(iv);
 ips = new IvParameterSpec(encIV);

 AESEngine a = new AESEngine();
 macHash = new CBCBlockCipherMac(a,32);

 }
 catch (Exception e) {
 e.printStackTrace();
 }
 }

 /* TODO: Perhaps use counters so that the IV need not be sent. */

 public String encrypt(String str) {
 try {
 // ecipher.init(Cipher.ENCRYPT_MODE, skeySpec,secRandom);
 ecipher.init(Cipher.ENCRYPT_MODE, skeySpec, ips);
 byte[] utf8 = str.getBytes("UTF8"); //get UTF8 bytes from String
 byte[] enc = ecipher.doFinal(utf8); //do the encryption
 return new sun.misc.BASE64Encoder().encode(enc); //return base64 encrypted string
 }
 catch (Exception e) {
 e.printStackTrace();
 }
 return null;
 }

 public String decrypt(String str) {
 try {
 String encString = str;
// dcipher.init(Cipher.DECRYPT_MODE, skeySpec, new IvParameterSpec(aes_iv));
 dcipher.init(Cipher.DECRYPT_MODE, skeySpec, ips);
 byte[] dec = new sun.misc.BASE64Decoder().decodeBuffer(encString); //Base64 String to byte
 byte[] decoded = dcipher.doFinal(dec); //decrypt the byte
 return new String(decoded, "UTF8"); //Convert byte to UTF8

string
 }
 catch (Exception e) {
 e.printStackTrace();
 }
 return null;
 }
 public String getKey()
 {
 String keyString = new sun.misc.BASE64Encoder().encode(skeySpec.getEncoded());
 return keyString;
 }
 public String getMac(String CBCkey, String message)
 {
 try {
 byte[] CBCAgain = new sun.misc.BASE64Decoder().decodeBuffer(CBCkey);

CAIA Technical Report 041123A November 2004 Page 52 of 55

 CBCSpec = new SecretKeySpec(CBCAgain, "AES");

 byte[] stringBytes = message.getBytes();
 byte[] hash = new byte[4];
 macHash.init(new KeyParameter(CBCSpec.getEncoded()));
 macHash.update(stringBytes,0,stringBytes.length);
 int blah = macHash.doFinal(hash,0);
 macHash.reset();
 return new sun.misc.BASE64Encoder().encode(hash);
 }
 catch (Exception e) {
 e.printStackTrace();
 }
 return null;
 }
 public boolean verifyMac(String CBCkey, String message, String theMac)
 {

 try {
 byte[] CBCAgain = new sun.misc.BASE64Decoder().decodeBuffer(CBCkey);
 CBCSpec = new SecretKeySpec(CBCAgain, "AES");

 byte[] stringBytes = message.getBytes();
 byte[] hash = new byte[4];
 macHash.init(new KeyParameter(CBCSpec.getEncoded()));
 macHash.update(stringBytes,0,stringBytes.length);
 int blah = macHash.doFinal(hash,0);
 macHash.reset();
 String newMac = new sun.misc.BASE64Encoder().encode(hash);
 if (theMac.equals(newMac)) {
 macResult = true; }
 else {
 macResult = false; }
 }
 catch (Exception e) {
 e.printStackTrace();
 }
 return macResult;
 }
}

3. RSAManager

/*
 * RSAmanager.java
 *
 * Created on 2 September 2004, 13:32
 */

package au.edu.swin.jn;

import java.lang.*;
import java.io.*;
import javax.crypto.*;
import java.security.Provider;
import java.security.cert.*;
import java.security.*;
/**
 *
 * @author nigel
 */
public class RSAmanager {

 char[] ksPass = null;
 KeyStore ks = null;
 PrivateKey privKey = null;
 X509Certificate remote_cert = null;
 X509Certificate local_cert = null;
 String local_alias = null;
 String remote_alias = null;
 String storepass;
 byte[] theSig = null;
 boolean testResult = false;

 KeyPair pair;

CAIA Technical Report 041123A November 2004 Page 53 of 55

 /** Creates a new instance of RSAmanager */
 public RSAmanager(String keystore_file, String store_pass, String aliasLoc, String aliasRem) {
 try {
 local_alias = aliasLoc;
 remote_alias = aliasRem;
 storepass = store_pass;

 Security.addProvider(new org.bouncycastle.jce.provider.BouncyCastleProvider());
 ks = KeyStore.getInstance("JKS","SUN");
 ks.load(new FileInputStream(keystore_file), storepass.toCharArray());
 }
 catch (Exception e) {
 e.printStackTrace();
 }

 }
 /* take an MD5 of message and ecnrypts with a private key */
 public String signMessage(String theMessage) {
 try {
 Signature signature = Signature.getInstance("MD5WithRSA");
 signature.initSign((PrivateKey) ks.getKey(local_alias, storepass.toCharArray()));

 ByteArrayOutputStream baos = new ByteArrayOutputStream();
 DataOutputStream dos = new DataOutputStream(baos);

 String sr = theMessage;
 byte[] utf8 = sr.getBytes("UTF8");
 dos.write(utf8);
 //dos.writeUTF("a string of sorts");
 byte[] arrayBytes = baos.toByteArray();

 ByteArrayInputStream bais = new ByteArrayInputStream(arrayBytes);
 DataInputStream dis = new DataInputStream(bais);

 byte[] buffer = new byte[arrayBytes.length];
 int length;
 while ((length = dis.read(buffer)) != -1)
 signature.update(buffer, 0, length);
 dis.close();

 // dis.read(buffer, 0, buffer.length);
 // System.out.println(dis.readUTF());
 // System.out.println(new String(buffer, "UTF8"));

 byte[] raw = signature.sign();
 theSig = raw;
 return new sun.misc.BASE64Encoder().encode(raw);

 }
 catch (Exception e)
 {
 e.printStackTrace();
 }
 return null;
 }
 /* takes the signature string and tries to verify it */
 public void verifyMessage(String theMessage, String theSignature) {
 try {

 Signature signature = Signature.getInstance("MD5WithRSA");
 signature.initVerify(ks.getCertificate("Nigel").getPublicKey());

 /* read in the message file */
 ByteArrayOutputStream baos = new ByteArrayOutputStream();
 DataOutputStream dos = new DataOutputStream(baos);

 String sr = theMessage;
 byte[] utf8 = sr.getBytes("UTF8");
 dos.write(utf8);
 //dos.writeUTF("a string of sorts");
 byte[] arrayBytes = baos.toByteArray();

 ByteArrayInputStream bais = new ByteArrayInputStream(arrayBytes);
 DataInputStream dis = new DataInputStream(bais);

CAIA Technical Report 041123A November 2004 Page 54 of 55

 byte[] buffer = new byte[arrayBytes.length];
 int length;
 while ((length = dis.read(buffer)) != -1)
 signature.update(buffer, 0, length);
 dis.close();

 /* Convert Signature String to Bytes and Test */
 byte[] signedBytes = new sun.misc.BASE64Decoder().decodeBuffer(theSignature);

 if (signature.verify(signedBytes)) {
 testResult = true;
 }
 else{
 testResult = false;
 }
 }
 catch (Exception e) {
 e.printStackTrace();
 }
 }

 public boolean verResult() {
 return testResult;
 }

 public String encodeMessagePublic(String theMessage) {
 try {
 remote_cert = (X509Certificate) ks.getCertificate(remote_alias);
 PublicKey pKey = remote_cert.getPublicKey();
 // CertificateFactory cf = CertificateFactory.getInstance("X.509");
 Cipher RSAcrypt = Cipher.getInstance("RSA", "BC");
 RSAcrypt.init(Cipher.ENCRYPT_MODE,pKey);

 byte[] utf8 = theMessage.getBytes("UTF8");
 byte[] enc = RSAcrypt.doFinal(utf8);
 return new sun.misc.BASE64Encoder().encode(enc);
 }
 catch (Exception e) {
 e.printStackTrace();
 }
 return null;
 }

 public String decodeMessagePrivate(String theMessage) {
 try {
 Cipher RSAdecrypt = Cipher.getInstance("RSA","BC");
 RSAdecrypt.init(Cipher.DECRYPT_MODE,(PrivateKey) ks.getKey(local_alias,

storepass.toCharArray()));
 byte[] dec = new sun.misc.BASE64Decoder().decodeBuffer(theMessage);
 byte[] decoded = RSAdecrypt.doFinal(dec);
 return new String(decoded, "UTF8");
 }
 catch (Exception e) {
 e.printStackTrace();
 }
 return null;
 }

 public String encodeMessagePrivate(String theMessage) {
 try {
 Cipher RSAencrypt = Cipher.getInstance("RSA","BC");
 RSAencrypt.init(Cipher.ENCRYPT_MODE,(PrivateKey) ks.getKey(local_alias,

storepass.toCharArray()));
 byte[] utf8 = theMessage.getBytes("UTF8");
 byte[] enc = RSAencrypt.doFinal(utf8);
 return new sun.misc.BASE64Encoder().encode(enc);
 }
 catch (Exception e) {
 e.printStackTrace();
 }
 return null;
 }

 public String decodeMessagePublic(String theMessage) {

CAIA Technical Report 041123A November 2004 Page 55 of 55

 try {
 remote_cert = (X509Certificate) ks.getCertificate(remote_alias);
 PublicKey pKey = remote_cert.getPublicKey();
 Cipher RSAdecrypt = Cipher.getInstance("RSA", "BC");
 RSAdecrypt.init(Cipher.DECRYPT_MODE, pKey);
 byte[] dec = new sun.misc.BASE64Decoder().decodeBuffer(theMessage);
 byte[] decoded = RSAdecrypt.doFinal(dec);
 return new String(decoded, "UTF8");
 }
 catch (Exception e) {
 e.printStackTrace();
 }
 return null;
 }

 public String exportLocalCert() {
 try {
 local_cert = (X509Certificate) ks.getCertificate(local_alias);

 byte[] certBytes = local_cert.getEncoded();
 return new sun.misc.BASE64Encoder().encode(certBytes);
 }
 catch (Exception e) {
 e.printStackTrace();
 }
 return null;
 }
 public void importCert(X509Certificate theCert, String theAlias) {
 try {

 byte[] buf = theCert.getEncoded();
 FileOutputStream os = new FileOutputStream(theAlias+".cer");
 os.write(buf);
 os.close();
 }
 catch (Exception e) {
 e.printStackTrace();
 }
 }

}

