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Abstract – This report details the development of a secure 
messaging add-on for use on public Instant Messaging (IM) 
networks.  It is a continuation of the project discussed in [25]. 
Due to sociopolitical and monetary reasons, the growth of secure 
enterprise IM systems has not kept pace with the use of insecure 
public IM systems.  A solution to this problem is to develop a free 
prototype that is able to secure communications over a public IM 
network, using a set of guidelines for information security and 
IM network compatibility.  The prototype was able to 
successfully integrate with a third party IM client and conduct 
an encrypted session over the MSN Messenger Network.  With 
more development and testing the prototype could become a 
viable option for use as a secure IM add-on. 
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I. INTRODUCTION 
Instant Messaging (IM) is an Internet-based application 

that allows for real-time communication between users as 
well as providing functions such as file transfers and video 
conferencing.   

 
Once thought of as a time-wasting tool for sending 

personal messages at work, IM has evolved into a more 
practical application that provides an easy way to exchange 
files and conduct spontaneous online meetings.  This 
evolution of IM applications has caused the IM industry to 
see a rapid growth in the number of users in recent years.   

 
IDC research found in 2003 that there were over 43 

million users of public IM in the workplace [1].  This 
number is indicative of how IM has involved from being a 
“virtual water cooler” [1] to an alternative business 
communication tool.   

 
The major problem with IM usage in the workplace 

however is that the IM programs used are insecure public 
IM applications.  A Group study conducted in 2003 found 
that nearly 80 percent of instant messaging in workplaces 
was done using public IM services.  

 
A study conducted by AT&T Laboratories between 

2000 and 2001 found that the majority of workplace IM 
interactions were “complex, work-specific interactions” 
[14].  This emphasises the need to make IM more secure if 
it is to be used in the workplace. 
 

A. Background 
There are two types of IM applications available to 

users: public and enterprise.  Public applications are 
downloadable off the Internet for free.  They are the most 
widely used type of IM application in both the home and 
workplace.  However, in the workplace, they pose a major 
security risk to an organisation.  This is mainly due to the 
fact that the data that is exchanged over public IMs can be 
intercepted and distributed.  If the data intercepted was 
sensitive, this could have a catastrophic effect on an 
organisation.   

 
Enterprise IM applications were developed to combat 

the security issues that public IM applications posed on 
organisations.  Enterprise IM applications are not free and 
must be purchased as with any proprietary software 
package.   

 
The initial aim of the project was to build a secure IM 

application that could be used in the workplace.  However, 
after further investigation into the reasons why enterprise 
solutions were not as commonly used as their public 
counterparts, it was discovered that the issue was of a 
sociopolitical nature than a technical one.   

 
Looking at the employee and manger attitudes, the 

following were some of the reasons deduced to explain why 
enterprise IMs were not widely used [25]: 

 
 Some managers did not see the purpose in 

implementing IM at work 
 It may be difficult for managers to find a solution to 

deal with IM usage – should it be banned altogether or 
if not, what kind of restrictions should be imposed? 

 Some employees may resist being restricted to using 
enterprise IMs as could cut off their ability to 
communicate with people outside of work 

 Companies may not have the monetary resources to 
purchase an enterprise IM system 

 Companies may not have any available IT resources to 
manage the system 
 
From this, it was decided that a more constructive 

approach would be to try and make public IMs more secure 
whilst they were still more predominately used than 
enterprise IMs.  To do this, the aim of the project changed to 
make an encryption add-on in an attempt to secure public 
IMs at work.     

 
The next phase of the project was to develop a proof of 

concept prototype using DES encryption for a Java-based, 
open-source Microsoft® MSN Messenger (or simply, MSN) 
IM client called TjMSN.  The prototype proved that public 
IMs could easily be made secure by using a simple add-on.   

 
For this semester’s work, as the prototype was a simple 

demonstration, it needed to be further developed to include 
such information security objectives such as authentication, 
data integrity and key management to become a more viable 
solution.  In addition to that, DES is an old encryption 
algorithm that is succeeded by more efficient, newer 
algorithms.  Therefore, the algorithm was to be replaced 
with one of the newer algorithms.    
 

B. Motivation 
Public IM applications are increasingly being used in 

the workplace.  The Telematica Institut in the Netherlands 
conducted a study in 2004 to investigate how public IM 
applications were adopted in the workplace [3].  The study 
found that the usage of IM increased fourfold, in both users 
and conversations, after the formal introduction of IM into 
the workplace.   

 
The increase in public IM usage and the lack of 

management control induces security risks within the 
workplace.  The project motivation was to devise and 
interim solution to the security risk whilst public IMs were 
increasing in usage without any management control.   

 
C. Context of Use 

The context of use for which the prototype was 
designed for was based on the last two points listed 
previously as reasons why enterprise IMs were not 
extensively used (lack of monetary funds and IT resources).  
The following describe the context of use for the prototype: 

 
 Small company (no more than 100 employees) 
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 Lack of monetary funds to purchase enterprise IM 
 Lack of IT resources to manage an enterprise IM 

system 
 Employees that see the benefits of using public IMs but 

do not wish to jeopardise the company by having their 
IM exchanges intercepted by adversaries 
 
Therefore, the prototype needed to be free, secure, easy 

to use and not take up too much IT resources. 
 

D. Outcomes 
The prototype was developed with two major design 

focuses: information security principles (VI) and IM design 
principles (VII).  Information security principles are 
concerned with how the information that is being exchange 
is kept secure from eavesdroppers.  This included the 
application of cryptography to keep messages secret, 
authenticate entities and implementation of a secure key 
management exchange.   

 
Considerations were also made in regards to the 

context of use in which these information security principles 
will be implemented.  IMs function in real-time, so it was 
imperative that the prototype did not slow down the 
communication excessively.  IMs also have a message 
length limit (payload).  This created a restriction on the 
length of the encrypted text that was to be exchanged over 
the communication channel.  Thus, tradeoffs between 
information security principles and IM design principles 
were made to develop a secure add-on that would be 
effective for an IM application. 

 
Once the prototype was developed, it was tested in a 

small network environment on different operating systems 
and processors.  The outcome of the tests found that the 
prototype did not adversely affect the real-time attribute of 
IMs when providing information security measures. 

 
The cryptographic world is constantly evolving.  

During the late stages of development, it was found that 
some cryptographic primitives were being included in code 
libraries that were more effective than the ones chosen for 
the prototype.  Therefore, it is recommended that the 
prototype should be developed further before being 
implemented in the “real world”.  
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II. OBJECTIVES AND SCOPE 
A. Objectives 

It was found in the previous semester’s work [25] that 
although there were many enterprise IM solutions available, 
the problem with their lack of use had to do with manager 
and employee attitude.  Therefore, it was decided to change 
the original objective of designing a secure IM application 
to designing a cheap, workable add-on that will try and 
solve IM security problems whilst public IMs were still 
predominately used.   
 

The objective for the project was to develop an 
encryption add-on for an MSNP (MSN Messenger Protocol) 
based [25] based client that met the information security 
objectives in (VI).  Although there are encryption add-ons 
that are currently available for download (IV), the add-on to 
be developed for the project had a small workplace focus 
and was also tested under similar conditions to that of a 
small workplace.   

 
B. Scope 

The prototype that was developed for the proof of 
concept in the previous semester was a simple design that 
would be impractical to implement in a real world 
environment.  The purpose for developing the prototype was 
to develop a familiarity with how to implement a 
cryptographic algorithm for a specified purpose.   

 
During the second stage of project development, the 

following was done to develop the prototype into a feasible 
workplace solution: 

 
 Implement a more effective algorithm than DES to do 

the encryption of the messages sent 
 Provide a key management system required to ensure 

that the keys used for encryption will distributed 
appropriately 

 Provide a data integrity mechanism to ensure that 
messages aren’t tampered with by a third-party 

 Provide an authentication mechanism to ensure that 
only authorised parties are privy to sensitive 
information 
 
When developing these features, considerations were 

made towards: 
 

 The level of security that would be provided 
 The performance of the add-on.  The add-on must be 

practical and not inconvenience users.   
 
Originally, once the MSN (MSNP based) prototype had 

been developed into a feasible add-on, it was planned to 
attempt to adapt the code for an OSCAR (Open System for 
Communication in Real-time) based IM.  OSCAR is the 
protocol used by ICQ and AIM.  However, during the 
beginning of the second stage of development, it was found 
that Microsoft had altered the method of accessing the 
login servers.  This meant that TjMSN had a major release 
update that needed to be studied to ascertain how the 

prototype was to be affected.  This meant that the project 
fell behind schedule and an actual OSCAR implementation 
was not developed.  However, the prototype did not include 
any MSN specific functionality.  Therefore, the prototype 
would need only minor changes to accommodate an 
OSCAR implementation. 
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III. MAJOR CONCEPTS 
This section describes the major theories and concepts 

that formed the backbone of the project.  These concepts 
were studied in depth during the first semester’s 
development work [25] and were used as a reference during 
the second semester’s project development.     

 
A. IM Protocols 

IM protocols define the way an IM application 
functions, including the services they provide, the network 
components needed and how these components interact with 
each other.  Currently, the most widely used public IM 
applications in the workplace [2] are: 

 
1. AOL Instant Messenger (AIM) 
2. Microsoft MSN Messenger 
3. Yahoo! Messenger 
4. ICQ 
 
Both AIM and ICQ use the Open System for 

Communication in Real-time (OSCAR) protocol.  Although 
both IMs use the same protocol, they are not interoperable.  
MSN uses the MSN Messenger Protocol (MSNP) and is 
also the protocol used for the project prototype.   

 
Understanding the IM protocol is important as it details 

what the IM application is capable of and what sort of 
design limitations may be imposed.  For an in depth 
discussion of OSCAR and MSNP, refer to [25]. 
 

B. Cryptographic Basics 
In a general scenario involving communication 

between two entities over an insecure channel, the 
communication exchange runs the risk of being intercepted 
by an unauthorised entity.  This scenario is shown in (Figure 

1 - Basic Communication Exchange).  Alice and Bob exchange the 
message m with each over the insecure channel.  Eve is 
listening in on the exchange and also receives m.   

 
 
 
 
 
 

Figure 1 - Basic Communication Exchange 

If Alice and Bob were not exchanging sensitive data, 
Eve’s eavesdropping would be a harmless nuisance.  
However, if the data exchanged was sensitive and Eve was 
able to intercept it, then the result may be disastrous.   

 
Cryptology is the technology used to keep sensitive 

data, exchanged between two parties, hidden from 
eavesdroppers.  This is done by encrypting the data being 
exchanged in a manner that only the intended receiver can 
decrypt it.    

 
Referring back to the general scenario, encryption will 

now be used in the communication exchange between Alice 
and Bob.  First, Alice and Bob agree on a secret key Ke.  

This will be done via another communication channel that 
Eve cannot intercept.  For example, Alice can mail Bob the 
key.   

 
When Alice goes to send the plaintext message m, she 

encrypts it using an encryption function E and the key.  This 
results in a ciphertext c, which is sent to Bob.  As Bob 
knows the secret key, when he receives c, he is able to 
decrypt with the decryption function D.  The result of this 
function is the message m, which Bob can now read.  This 
process is shown in (Figure 2 - Generic Encryption Scenario).  Eve 
can still intercept messages sent on the channel, however 
now Eve intercepts c instead of m.  As Eve does not know 
what the key Ke is, Eve cannot decrypt the ciphertext and 
therefore cannot read the message sent. 

 
 
 
 
 

Figure 2 - Generic Encryption Scenario 

 
C. Cryptographic Algorithms 

As seen in the generic encryption scenario above, Alice 
uses an encryption function to convert the plaintext message 
into ciphertext.  The function uses a cryptographic 
algorithm to perform the conversion.  There are many 
different cryptographic algorithms.  The algorithms can be 
grouped into classes called primitives.  There are three main 
primitives: unkeyed, symmetric keyed and asymmetric 
keyed (Cryptographic Primitives).   

 
Unkeyed algorithms do not require any keys.  An 

example includes arbitrary length hash functions, the main 
subclass of unkeyed algorithms.  Hash functions work by 
generating a hash value (a small message digest) from a 
large message source.  Hash functions are implemented in 
many cryptographic processes, including digital signatures, 
key establishment and random number generations.  Hash 
functions are also implemented in Message Authentication 
Codes (MAC).  However, as MACs use a symmetric key, 
they are therefore classed under the symmetric keyed 
primitive. 

 
Symmetric key algorithms are also known as secret key 

algorithms.  These algorithms use a single key, called a 
secret key, to manipulate the data.  The secret key is shared 
by authorises entities and is kept secret from everyone else.  
Symmetric key algorithms can be implemented in the 
following ways: 

 
 To provide confidentiality by using the same key to 

encrypt and decrypt data.  Unauthorised entities should 
not know this key. 

 Generation of pseudorandom numbers 
 Form part of a key establishment process 
 Perform authentication and data integrity checks in the 

MAC process through using the same key to generate 
and validate the MAC 

m 

m m 

Alice 

Eve 

Bob 
   m 

c 

m,c:= E(Ke, m) c,m:= D(Ke, c) 
 

Alice 

Eve 

Bob 
c 
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Asymmetric key algorithms are also known as public 

key algorithms.  These algorithms use a set of two related 
keys known as a key pair.  Both authorised and 
unauthorised entities are able to know what the public key 
is.  The private key should only be known to the entity that 
owns the key pair.  The relation between the private and 
public key is such that the private key cannot be discovered 
using the public key.  Asymmetric key algorithms are 
implemented in the following way: 
 
 Calculating digital signatures 
 Establishing cryptographic keying material  

 
Each cryptographic algorithm should be evaluated 

according to the following criteria to assess which is the 
best algorithm for the required functionality: 
 
1. Security level: Usually, this criterion is difficult to 

determine.  Normally, the level of security is defined by 
the upper bound of the level of work necessary to 
defeat the targeted information objective/s.  This upper 
bound is also known as the work factor.    
 

2. Functionality: As stated previously, a combination of 
cryptographic algorithms is needed to cater for all four 
of the information security objectives.  The 
functionality defines which objective/s the algorithms 
are the most suitable to.    
 

3. Modes of Operation: The algorithms will display 
varying characteristics depending on how they are 
applied and what type of inputs used.  Therefore, the 
mode of operation will determine what type of 
functionality the algorithm will provide.    
 

4. Performance: This measures the efficiency of an 
algorithm, depending on its mode of operation. 
 

5. Implementation Ease: This measures how easy it is to 
implement the algorithm in a practical environment.  
For example, sometimes the environment may cause 
there to be a performance or level of security trade off 
because the hardware or software may be below the 
minimal requirements needed to run a more efficient or 
secure algorithm.    
 

D. Information Security 
The main concept behind cryptology is information 

security.  Information security aims to handle and minimise 
data communication problems.  Not only can sensitive data 
be read by eavesdroppers, the data can also be intercepted, 
altered and sent to the intended receiver or passed onto an 
adversary.  Another data communication problem is 
disputes about the content of a past communication 
exchange.   

 
To deal with these problems, information security has 

the following main objectives:  

 
 Confidentiality (or privacy):  concerned with 

preventing eavesdroppers from being able to read the 
information that they have intercepted. 

 Data integrity: involves ensuring that the data received 
has not been altered in any way.  Alterations include 
deleting and modifying all or part of the data as well as 
inserting additional data.   

 Authentication: focused on establishing the identity of 
the user or system that originated the data.   

 Non-repudiation: aims to prevent the denial of 
previous commitments or actions as well as prove the 
integrity and origin of the information independently by 
a third party.   
 
In general, most data security systems combine two or 

more of the above objectives to gain a satisfactory level of 
security.  For example, confidentiality would not ensure that 
the entity that the communication exchange is being 
conducted with is an authorised entity.  Hence, 
authentication needs to be implemented in conjunction with 
confidentiality. 

 
One of the aims of the project was to include all these 

security objectives.  Some cryptographic algorithms are able 
to serve multiple objectives; such as digital signature 
algorithms are able to provide authentication, data integrity 
and non-repudiation.   
 

E. Kerckhoff’s Principles 
August Kerchoffs, one of the great early cryptologists, 

published in 1883 what he deemed were the six essential 
attributes that a military cipher should contain.  They are 
[7]:  

 
 The system should be, if not theoretically unbreakable, 

unbreakable in practice.   
 Compromise of the system should not inconvenience 

the correspondents.   
 The key should be rememberable without notes and 

should be easily changeable.   
 The cryptograms should be transmissable by telegraph. 
 The apparatus or documents should be portable and 

operable by a single person. 
 The system should be easy requiring neither knowledge 

of a long list of rules nor involving mental strain.   
 
With modifications to adapt to the modern computer 

world, these attributes were taken into consideration when 
designing the project.   

 
The second attribute was later expanded and became 

known as ‘Kerckhoffs’ Principle’:  
 
“The security of the encryption scheme must depend 

entirely on the secrecy of the key and not the secrecy of the 
algorithm.” [7] This principle formed an important basis for 
the design of the project. 
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IV. CURRENT SOLUTIONS 
Through the second semester of the project 

development, investigations into what solutions were 
already available were made periodically.  The below are 
the most recent solutions that were looked at.  These 
solutions were also discussed in the context of usage 
defined for the project. 

 
A. CryptoHeaven 

CryptoHeaven [26] is an application that offers a 
secure Internet communications service.  It consists of the 
following: 

 
 Secure email 
 Secure online storage, file sharing and distribution 
 Secure instant messaging 
 Secure and private discussion forums 

 
The features above are integrated into a single user 

interface.  There are two types of accounts offered: free and 
premium. 

 
The cryptography used includes the Advanced 

Encryption Standard (AES) cipher with a 256-bit symmetric 
key, public key cryptography using 2048 to 4096-bit 
asymmetric keys and the Secure Hash Algorithm (SHA-
256) message digest function.   

 
The major difference between this product and the 

solution for the project was that the product offered a secure 
solution to numerous Internet communication services such 
as email and instant messaging.  The project’s focus was 
solely on securing instant messaging.  Therefore, certain 
design considerations may be different to that of 
CryptoHeaven. 

 
B. Top Secret Messenger (TSM) 

Top Secret Messenger (TSM) [27] is a public key 
encryption plug-in for popular IMs and e-mail clients such 
as ICQ Instant Messenger®, MSN and Microsoft Outlook®.  
TSM uses Elliptic Curve Cryptography (ECC) algorithm as 
well as SHA-1 hash function and Triple DES (3DES).   

 
There are two versions of the plug-in available: trial 

and registered.  The trial version is basically a demo of TSM 
technology.  It uses weak 8-bit encryption keys instead of 
the 307-bit keys used in the registered version.   

 
Although the product provides a solution to the 

problem investigated for the project, it is at a cost.  It was 
decided in the first semester [25] that the focus would be on 
small business that did not have the monetary funds to buy 
enterprise IMs.  In the free version of TSM, the security 
provided is minimal and not feasible for actual workplace 
usage. 

 
 

C. Secway Simp Pro and SimpLite 
Similar in concept to the encryption add-on proposed 

by the group, Simp Pro targets the corporate environment 
and provides encryption of conversations across a number 
of popular IM networks with a variety of encryption 
algorithms.  It also has the ability to encrypt file transfers in 
ICQ and MSN. 

 
Public Key ciphers supported are RSA (2048 to 4096-

bit), Diffie-Hellman, DSA and ECC.  Symmetric ciphers 
available are AES, 3DES, CAST and Twofish, all of which 
are limited to 128-bit key lengths. 

 
SimpLite, a reduced feature version of Simp Pro, is 

available free for personal use.  It supports two 2048-bit 
RSA keys per installation and can use either 128-bit AES or 
Twofish symmetric ciphers.   

 
The cost of Simp Pro is 25€ per licence, or 45€ for two 

licences for small offices/home.  Bulk purchases for 
enterprise users range from 10€ per licence starting from 10 
licences. 
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V. PROJECT DEVELOPMENT PROCESS 
This section outlines the project development 

undertaken to design and develop the prototype.  The 
development occurred in three major stages: prototype 
assessment, prototype design and prototype testing. 

 
A. Prototype Assessment 

The prototype developed in the previous semester was 
assessed to establish what parts of the prototype was 
reusable or needed further development.  The majority of 
the assessment was related to the cryptography used and 
information security objectives.  The old prototype only 
provided confidentiality.  It did not have any authentication, 
data integrity or non-repudiation mechanisms.  Research 
was done to gain knowledge on how to implement these 
mechanisms with respect to the application context.  

 
Also, the encryption algorithm used (DES) was not a 

feasible solution as there are known attacks against it.  This 
meant that a newer, more efficient algorithm needed to be 
investigated and implemented.  During the assessment, 
considerations were also made in regards to the limitations 
that the context of use (i.e. in an IM application) were made 
to ensure that the final solution would be feasible. 

 
B. Prototype Design 

This section outlines the software development life 
cycle, development tools and cryptographic tools used to 
develop the prototype design. 

 
1. Software Development Life Cycle 

An evolutionary prototyping approach was taken 
during the design and development of the prototype.  This 
was an iterative approach, refining parts of the system for 
each iteration.  This approach allowed the reuse of code, 
including code from the original prototype developed in the 
first semester. 

 
2. Development Tools 

Crimson Editor (Windows) and Mi (OS X) text editors 
were initially used when developing the prototype.  These 
tools were replaced, though, when a change in the MSNP 
login process required that code be transferred to a more 
recent version of TjMSN.  The new development tool 
chosen was NetBeans IDE. 

 
a) NetBeans IDE 3.6 

NetBeans IDE is a free, open-source Java development 
environment available on a number of platforms.  It is also 
the environment in which TjMSN was originally developed.  
NetBeans was chosen as the replacement environment as it 
allowed for easier editing of TjMSN’s existing GUI and 
simplified compilation of classes with multiple 
dependencies.  NetBeans also allowed the group to 
standardise development environments. 

 

b) Java 2 SDK 
The Sun Java 2 SDK1.4.2 was used to compile the Java 

code, which was the most recent SDK available at the time 
of development.  Although Java 2 SDK 5 has now been 
released, the final implementation of the prototype was 
compiled using J2SDK v1.4.2.  

 
c) Ethereal 

The Ethereal packet analysis tool [18] was used to 
observe IM conversations as they appeared on the network 
before and after encryption was activated. 

 
3. Cryptographic Tools 

The J2SDK v1.4.2 by default does not contain the 
necessary packages or settings required to obtain a 
sufficiently high level of cryptographic security.  The Java 
Cryptography Provider for Java Cryptography Extensions 
(JCE) supplied with v1.4.2 does not support the RSA 
algorithm, while the Security Policy file of the default Java 
installation prevents the use of long encryption keys.  To 
reach a suitable level of security, a third party 
Cryptographic Provider and an enhanced Security Policy 
were required. 

 
a) The Legion of Bouncy Castle 

The Legion of Bouncy Castle [15] is a group who have 
written a set of cryptographic APIs for Java including a 
Cryptographic Provider.  These files are available free of 
charge and are open source.  The Bouncy Castle 
Cryptographic Provider supports a wide range of 
cryptographic methods and algorithms and was used in 
place of the Sun Java Cryptographic Provider for all 
functions of the prototype.  

 
b) Unlimited Strength Security Policies 

United States policy restricts the exportation of high 
strength encryption technology.  Therefore, encryption key 
sizes for a default installation of the Sun JRE are limited to 
a “strong” length of 512-bits.  As the RSA keys to be used 
by the prototype range up from 1,024-bits, it was required 
that a replacement “unlimited” strength US Export Policy 
File be obtained from the Sun JCE website. 

 
c) Java KeyTool 

An individual’s private key, used to decrypt received 
messages and to sign outgoing messages, must be prevented 
from being accessed by any unauthorized persons. 

 
Rather than create a program or method to protect and 

organise a user’s keys, it was decided that an existing 
alternative should be located and used by the prototype. 

 
The Java KeyTool [20] provides a method of generating 

and storing an individual’s private key, in addition to any 
public keys they may have obtained, in single file called a 
KeyStore. This KeyStore is protected by a password and 
encrypted on the hard disk.  Also, KeyStore files can be 
interfaced directly from within a Java program using the 
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methods provided within the Java Runtime Environment 
(JRE). 
 

KeyTool was used to manage the key-pairs and public 
keys used by the prototype. 
 

C. Prototype Testing 
The prototype was tested often during development.  

Individual routines were first tested as standalone programs 
run from the console using a ‘test harness’ program.  A test 
harness is a simple program which can call methods from 
within a class to test its operation, and does not require the 
TjMSN client to be running.   

 
Once successfully tested, methods were written into the 

prototype classes and tested in a ‘live’ situation on the MSN 
Network. 

 
a) Testing Environment 

During early development the prototype was tested by 
running two instances of TjMSN on a single computer 
simultaneously.  A connection to the MSN Network would 
be established and messages sent between the two clients.   

 
Once the prototype had matured to a more complete 

form, several tests were carried out in an environment 
similar to that which might be found in a small company.  
This was a small LAN consisting of three Windows-based 
computers connected to the Internet through a gateway.  
Tests were also carried out by communicating between the 
LAN and a remotely located computer. 
 

b) Functionality Testing 
The prototype functions were tested by establishing and 

undertaking encrypted conversations between two clients 
connected to the MSN network.  A debugging console was 
used during this process, allowing any exceptions or errors 
encountered to be traced.  The code was also tested against a 
range of incorrect user input to aid in developing error-
handling code.  

 
c) Performance Testing 

Test harness programs were written to interface with 
the prototype’s encryption code and time the implemented 
functions on a number of different systems.  This was done 
to observe the delay introduced into a conversation by 
activating encryption and establish a baseline system for 
acceptable performance. 
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VI. INFORMATION SECURITY DESIGN PRINCIPLES 
This section describes the information security design 

principles that were used to guide the development of the 
prototype.  The actual design implementation of these 
principles, can be seen in section VIII. 

 
The information security objectives (confidentiality, 

data integrity, authentication and non-repudiation) were 
used to form a set of requirements for the prototype.  The 
aim was to ensure that the prototype employed these 
objectives as part of its design.   

 
Another design focus was implementing Kerckhoffs’ 

principle, whereby the strength of the encryption depended 
on the secrecy of the key.  To achieve this, the appropriate 
key establishment and key management techniques needed 
to be implemented.    
 

A. Confidentiality 
The first information security objective dealt with was 

confidentiality.  As seen in the generic communication 
scenario, the basic concern when exchanging sensitive data 
over a channel is that an unauthorised entity is able to 
intercept and read the data that is being exchanged.  
Confidentiality is concerned with preventing the ability of 
the unauthorised entity to read the data being exchanged.   

 
The method to keep data confidential is to encrypt the 

data.  There are two types of encryption algorithms that are 
normally used to do this: stream ciphers and block ciphers.  
Stream ciphers encrypt individual characters of a plaintext 
message one at a time.  In contrast, block ciphers 
simultaneously encrypt groups (i.e. blocks) of characters of 
the plaintext message.   

 
For the prototype, a block cipher was chosen to 

implement confidentiality.  The major reason for this was 
that although there are plenty of resources for the theory of 
stream ciphers and stream cipher design principles, most 
stream ciphers are proprietary.  For example, LEVIATHAN 
has a Cisco patent pending.  Therefore, there are no official, 
standardised documentation or code libraries for the stream 
ciphers currently being used in systems.    
 

The chosen block cipher was the Advanced Encryption 
Standard (AES), which is a US government standard cipher.  
The rationale behind this was that as a government standard, 
it had been proven to work effectively and had yet to have 
an effective attack against it.  Also, because AES is 
standardised, all encryption libraries contain it, making the 
actual implementation of AES easier.   

 
A key problem with using block ciphers is that the 

plaintext to be encrypted may be longer than the block 
length.  To deal with this, a block cipher mode was used.  
The chosen block cipher mode was the Cipher Block 
Chaining (CBC) mode.  CBC is the most widely used block 
cipher mode in current systems.  Hence, like with AES, 

there were many documentation and code library sources to 
examine and choose from. 
 

1. Block Ciphers 

Block ciphers are a fundamental element in many 
cryptographic systems and belong under the symmetric key 
primitive.  A block cipher is an encryption function that 
maps n-bit plaintext message blocks to n-bit ciphertext 
blocks.  In other words, it is used for fix-sized blocks, with 
n being the block length.  For short messages, the block 
cipher can be used directly.  More commonly, however, the 
message length is longer than the block length.  If this is the 
case, a block cipher mode should be used.  The main reason 
why the cipher text generated is because this avoids data 
expansion. 

 
Block ciphers are normally implemented with a fixed, 

secret key.  This corresponds with Kerckhoff’s principle, 
whereby confidentiality is dependent on the secrecy of the 
key as it is assumed that the algorithms for the encryption 
and decryption are publicly known.  The key is a string of 
bits, like the plaintext and ciphertext.   The key is chosen at 
random.  The common key sizes are 128 and 256 bits.    

 
For unique decryption of the ciphertext, the algorithm 

needs to be one-to-one, where the plaintext can be mapped 
to the ciphertext.  For any fixed key, a lookup table that 
maps the plaintext to the ciphertext can be computed.  The 
size of the lookup table would be huge.  For example, for a 
block cipher with a 32-bit block length, the lookup table 
would be 16Gb [6].   

 
Block ciphers on their own are used to encrypt 

information, providing confidentiality.  As a building block 
in a cryptographic system, block ciphers can be used for a 
variety of functions.  For example, as part of pseudorandom 
number generators, stream ciphers, MACs and hash 
functions, message authentication and data integrity 
techniques, entity authentication protocols and digital 
signature schemes.   

 
When implementing block ciphers in practical 

applications, tradeoffs need to be made.  These include 
speed requirements, memory limitations and platform 
restraints (e.g. hardware, software).  This results in a 
tradeoff between efficiency and security.  It is therefore best 
to look at several block ciphers before deciding which is the 
best for the intended application.   

 
a) Advanced Encryption Standard (AES) 

The block cipher that was chosen for this project was 
the Advanced Encryption Standard (AES) (Advanced 
Encryption Standard (AES)).  AES was developed through the 
National Institute of Standards and Technology (NIST), 
who had asked for cipher proposals from the cryptographic 
community.  The cipher that was chosen to become AES 
was the Rijndael algorithm and became a US government 
standard. 
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The Rijndael algorithm is a symmetric block cipher 
that processes data of 128-bit block length, using keys of 
either 128, 192 or 256 bits in size.  Although Rijndael is 
able to handle additional block sizes and key lengths, this is 
not included in the NIST standard [4]. 

 
The structure of a single round of AES is shown in 

Advanced Encryption Standard (AES).  Depending on the key 
size, the full encryption process consists of 10-14 rounds.  
The plaintext, which is 128 bits (16 bytes) in size, is input 
through the top of the structure.  The plaintext is then XOR 
with 16 bytes of the round key.    

 
Each of the 16 bytes is then used as an index into an S-

box table.  The S-box is a substitution box, which is a 
lookup table that is publicly known.  All the S-boxes are 
identical.  The S-box table maps 8-bit inputs to 8-bit 
outputs.   

 
The bytes are then rearranged in a specific order and 

are mixed into groups of four using a linear mixing 
function, completing a single round.  The term linear refers 
to the fact that each output bit of the mixing function is the 
result of the XOR of the input bits.   

 
The core reason for why AES was the chosen block 

cipher was that it is a current US government standard.  The 
cipher has yet to have an attack defined for it (although it 
may be attacked in the future) and is used extensively.   In 
addition, it is relatively easy to implement and is supported 
by all cryptography libraries. 

 
b) Alternative Block Ciphers 

There were two main alternative block ciphers that 
were looked at: the International Data Encryption Algorithm 
(IDEA) and Triple DES (3DES).  Both of these algorithms 
are based on the Feistel cipher.  The Feistel cipher takes the 
plaintext and splits it into two halves, L and R.  For each 
round, there’s a subkey Ki, which is derived from the cipher 
key K.  Within each round, L is XOR with F(Ki, R), where F 
is some kind of function.  L and R are then swapped.  The 
main advantage of using a Feistel cipher is that for 
decryption, the same process is used.  This makes it easier 
to implement.   

 
IDEA [6] uses a 128-bit key to encrypt a 64-bit 

plaintext message into a 64-bit ciphertext block.  The 
structure of IDEA is based on the Feistel cipher, whereby it 
uses 8 rounds with six 16-bit subkeys followed by an output 
transformation.  The main reasons why IDEA was not used 
were: 

 
 There are known attacks on IDEA, which have 

continued to improve [5] 
 The block size is too small 
 

3DES [6] is derived from the NIST standardised block 
cipher, the Data Encryption Standard (DES).  DES was 
developed in the mid 1970s and was the first commercial-

grade algorithm that had open and fully specified 
implementation documentation.   Although it is the most 
well known symmetric key cipher, it is no longer useful in 
modern implementations.  DES uses a 56-bit key and 
generates 64-bit ciphertext blocks.  By today’s standards, 
the key and block size are too small.  3DES uses three DES 
encryptions in sequence.  This solves the small key size 
problem, however there is no known solution for the small 
block size problem.  Additionally, DES is already a slow 
cipher by today’s standards and 3DES is a third of the speed 
of DES.  Therefore, 3DES was not chosen as the block 
cipher to implement in the prototype. 

 
c) Key Size 

AES can operate with key sizes of 128, 192 and 256 
bits.  Although a 128-bit key is sufficient for most 
applications, it is liable to collision attacks (Collision 
Attacks).  This type of attack depends on the fact that 
collisions (duplicate values) appear more regularly than 
expected.   

 
For example, the same key might be reused after 

exhausting all other key values for a particular application 
such as secure online shopping transactions.   An attacker 
might expect this and be able to insert messages from the 
old transaction while the new transaction is occurring.    

 
A recommended design rule [5] is: “For a security 

level of n bits, every cryptographic value should be at least 
2n bits long”.  Therefore, for 128-bit security, a 256-bit key 
was implemented.   AES operates slower with a 256-bit key 
than a 128-bit key.  However, for the intended 
implementation, the delay would be negligible to the user.   
 

2. Block Cipher Modes 

Block ciphers can only encrypt fixed-sized blocks.  For 
encrypting messages that are longer than the block length, a 
block cipher mode need to be used.  A block cipher mode is 
an encryption function built using a block cipher.   

 
A major point to emphasise is that encryption modes 

are only able to prevent an eavesdropper from reading the 
data.  There is no authentication mechanism.  Thus, the 
eavesdropper is able to alter the data without needing to be 
able to read it.  In a lot of situations, the damage caused by 
modified data is greater than the fact that the data is being 
read.  Therefore, the encryption should always be combined 
with authentication.   

 
The encryption and authentication method is still not 

entirely secure as the attacker will still be able to perform a 
traffic analysis.  A traffic analysis involves determining the 
fact that a communication exchange is currently occurring, 
when it is occurring, how much data is being communicated 
and whom the communication exchange is with.  Although 
traffic analysis can be prevented, it generally takes up a lot 
of bandwidth for general purposes and is therefore not 
implemented. 
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a) Cipher Block Chaining (CBC) 
The most commonly used block cipher mode is cipher 

block chaining (CBC).  This was main reason why CBC 
was the chosen block cipher mode as there were ample 
documentation sources and code library providers.  

 
CBC uses an n-bit initialisation vector (IV).  The inputs 

of the algorithm are the key, the IV and one n-bit plaintext 
block.  Each block of the message is encrypted separately, 
with the plaintext first being XOR with the previous 
ciphertext block.  This is referred to as the chaining 
mechanism.  Also, the IV needs to be changed (using either 
a counter or random field) for each block.  The reason why 
this is done is to ensure that if two plaintext blocks were the 
same, their ciphertext blocks would not be identical, 
reducing the amount of information given to the attacker.   

 
b) Electronic Codebook (ECB) 

An alternative mode that was looked at was the 
electronic codebook (ECB) mode [5].  Each block of the 
message is encrypted separately.  This creates a problem in 
that if two plaintext message blocks are the same, then their 
ciphertext block will be identical, providing an attacker with 
information for cryptanalysis.  For this reason, ECB was not 
selected. 

 
c) Nonce-Generated IV 

There are several methods of generating the IV used in 
CBC.  These include fixed, counter, random and nonce 
generated (Initialisation Vector (IV) Generation Methods).  The 
choice of how the IV is generated is important, as it 
determines how much information is given to the attacker.   

 
For example, when using a counter generated IV, if the 

first blocks of a message have minor differences then the IV 
counter could possibly cancel the differences during the 
XOR process and generate identical ciphertext blocks.  This 
gives an attacker enough information to draw conclusions 
about the differences between the two messages, which is 
highly undesirable.   

 
A nonce (number used once) generated IV has the 

ability to deal with the problems in generating IVs.  Each 
message is given a unique number called a nonce.  The 
uniqueness of a nonce is its most important characteristic 
and the same nonce should not be used with the same key.   

 
The nonce can be randomly generated or be a message 

sequence number.  As discussed in section, message 
numbering helps ascertain whether or not an adversary has 
deleted or inserted messages during a communication 
exchange.  Therefore, the nonce that was used in the 
prototype also had a dual role as the message sequence 
number.    
 

B. Data Integrity 
Data integrity is concerned with ensuring that the data 

being transmitted is not altered in any way during its path 
through the communication channel, to the intended 

recipient.  Different types of alterations can occur, including 
deleting and modifying all or part of the data as well as 
inserting additional data.   

 
Looking back at the generic encryption scenario, when 

Alice sends the message m, Eve alters the message to m*.  
So, Bob receives m*instead of m.  When Bob receives a 
message, Bob needs to determine whether the message was 
the one that Alice sent.  Therefore, Bob should not assume 
that all messages that he receives comes from Alice.  
However, if he does not know who sent the message, then 
the message exchange is useless.  Subsequently, to help 
with ensuring data integrity, authentication should be 
implemented so that Bob knows whether the message came 
from Alice or not.   This type of authentication is known as 
message authentication (or data origin authentication).   

 
Nonetheless, having authentication only does not 

completely solve the problem of data integrity.  Eve is still 
able to delete messages, insert old messages or change the 
order of the messages.  Therefore, message numbering 
should also be implemented so that Bob knows that he is 
getting the correct sequence of messages.   

 
The message sequence numbering policy used for the 

prototype was that the sequence number started at zero and 
incremented sequentially by one for each successive 
message.  If Bob receives a message whereby the sequence 
number has not been used previously in the current 
exchange and satisfied the condition that it was one greater 
than the previous number, the message would be accepted.   

 
Another method to ensure data integrity is for Alice to 

generate a message digest using a hash function [3] and 
sends it to Bob along with the ciphertext message.  When 
Bob receives the message, he also takes generates a message 
digest and compares it the one Alice sent.  If the message 
digests match, it confirms that the message Alice has sent 
has not been altered in any way. 

 
The primary reason why the latter solution was not 

implemented was by sending a hash along with the message, 
it may exceed the message.  There are ways to counter this, 
however it would make implementation more complicated.  
Therefore, the first method of ensuring data integrity was 
used, with the details of authentication illustrated in section 
(Message Authentication). 
 

C. Authentication 
The aim of authentication is to be able to establish the 

identity of the entity that originated the data.  This is 
important as it ensures the data sent is coming from a 
trusted, authorised entity.  Essentially, there are two types of 
authentication: entity authentication and message 
authentication.   

 
1. Entity Authentication 

Entity authentication is concerned with the verification 
of an entity’s identity in real-time, while the entity waits.   
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The entity that is questioning the identity is known as the 
verifier and the entity whose identity is being questioned is 
known as the claimant.  The most common method of entity 
authentication is for the verifier to challenge the correctness 
of a message by checking to see whether the claimant is 
privy to a secret that is associated with an authorised entity.  
This is known as challenge-response identification.    

 
a) Challenge-response Identification 

The claimant confirms its identity to the verifier by 
demonstrating that they are privy to a secret associated with 
the verifier, without actually revealing the secret itself to the 
verifier.  The “challenge” is normally a number that has 
been chosen secretly by one entity at the beginning of the 
identification protocol. 

 
As well as operating in real time, entity authentication 

also makes numerous challenges throughout the 
communication exchange to ensure that an adversary has 
not “hijacked” the communication exchange.  Given that 
there are numerous entity authentication attempts during a 
communication exchange, the challenge should be a time-
variant parameter that is always unique.   A nonce satisfies 
this requirement and is therefore used as the challenge.   

 
As stated in section VI.A.2.c), the nonce used for the 

prototype is also a message sequence number.  In the 
context of entity authentication, the sequence number can be 
used as a challenge as it is specific to a particular pair of 
entities and must be explicitly or implicitly associated with 
both the verifier and the claimant.   

 

(1) Challenge-response Using Symmetric Key 
Encryption 

The challenge-response mechanism used for the 
prototype involved symmetric (secret) keys.  This required 
the verifier and the claimant to share a symmetric key.  How 
the key is established between the two entities is detailed in 
section VI.E - Key Establishment and Management.  
The claimant uses the key to encrypt the sequence number 
(the challenge) thereby demonstrating the knowledge of the 
secret key and the challenge, proving the claimant’s 
identity. 

 
The reasons why this technique was used for entity 

authentication were that the parameters used during the 
authentication (the message sequence number and the secret 
key) were also implemented for other functions within the 
prototype.  This created fewer overheads for the prototype, 
which was desirable with respect to the context of use of the 
prototype.   

 
2. Message Authentication 

Message authentication is also known as data origin 
authentication.  It is closely related to data integrity as it 
checks the data origin, making sure it came from a trusted 
source.  Data that has been altered has a new source.  For 
example the data that Alice sends has been altered by Eve, 

making Eve the new source of the data.  As mentioned in 
the data integrity section (VI.B), Bob should not assume 
that Alice sent the message.  If Bob cannot determine who 
sent the message, then the message itself is useless.   Hence, 
message authentication essentially provides data integrity 
and vice versa. 

 
Methods of providing message authentication include 

[6]: 
 

 Message Authentication Codes (MACs)  
 Digital signature schemes 
 Before encryption, appending a secret authenticator 

value to the text to be encrypted 
 
It needs to be noted that unlike entity authentication, 

message authentication does not operate in real-time, as it 
does not have any guarantee of when the message was 
created.     

 
3. Message Authentication Code (MAC) 

Message Authentication Codes (MACs) are used to 
provide data origin (or message) authentication.  They are a 
special type of hash function where one of its inputs is a 
secret key.  The MAC function outputs a MAC value that is 
sent along with the encrypted message.  The receiver 
generates a MAC value of the encrypted message received 
and checks to see whether it is the same as the MAC value 
received.  The MAC values would be equal if the message 
has not been tampered with. 

 
a) CBC-MAC 

CBC-MAC is an algorithm that converts a block cipher 
into a MAC, using the secret key of the block cipher.  CBC-
MAC involves encrypting the plaintext message using CBC 
mode, then keeping only the last block of ciphertext and 
discarding the other blocks.  The MAC value is then 
computed by using the last block and the secret key to 
generate a hash.  It is important that the key used in CBC-
MAC is different to the key used in CBC encryption.  
Therefore, during the key exchange process, two secret keys 
need to be exchange: one for encryption and one for 
authentication. 

 
The major problem with implementing MACs is that 

MACs take a long time to compute when compared to 
computing ciphertext.  As the context of the project is to 
secure instant messaging, it is important to find a MAC that 
will not excessively slow down the communication 
exchange, as the messaging will no longer be “instant”.  The 
block cipher mode used is CBC, so by using CBC-MAC, 
the same primitive algorithms are used.  This makes 
proficient implementation easier.  A UMAC [5] was also 
considered, as UMAC algorithms are specifically adapted to 
particular types of systems to make the generating a MAC 
multiple times quicker.  The main reason why it was not 
implemented was not used was that finding a Java library to 
implement UMAC proved to be difficult. 
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D. Non-repudiation 
The aims of non-repudiation are to prevent the denial 

of previous commitments or actions as well as prove the 
integrity and origin of the information independently by a 
third party.  By referring back to the generic encryption 
scenario, it can be seen that non-repudiation involves, like 
data integrity, a form of authentication.   

 
Bob should ensure that the person he is communicating 

with is Alice and that her messages are not being altered in 
any way.  Subsequently, at a later date, Alice cannot dispute 
that it was not with her the communication exchange 
occurred or that the data Bob received was not what Alice 
had intended for Bob to receive.    

 
The implementation of non-repudiation therefore 

involved the same techniques used in entity authentication 
and message authentication.   

 
E. Key Establishment and Management 

To share the secret key used for confidentiality, a key 
establishment process or protocol must be implemented.  
This is an important aspect in implementing information 
security as it deals with how to apply Kerckhoffs’ Principle.  
There are numerous different methods of implementing a 
key establishment protocol.  These methods have a common 
objective of establishing a shared secret (the key) with an 
entity whose identity can be verified.  This involves is 
another type of authentication called key authentication, 
whereby the identity of an entity that can possibly share a 
key can be verified. 

 
1. Session Keys 

The secret key that is shared between two entities is 
also known as a session key as the key is transient and is 
only valid for the current communication session.  Once the 
communication session is over, the key is discarded.  There 
were three main reasons why session keys were 
implemented in the prototype.   
 

The first reason was to remove the need of having to 
store the secret key.  In the case that the entity 
communicates with a large number of entities, a large 
number of keys will need to be saved, creating possible 
storage issues.  The second reason was to limit the amount 
of information given to an attacker.  The more ciphertext 
that is sent with the same key, the more information an 
attacker has for cryptanalysis.  The final reason was to limit 
the exposure of data if the secret key is compromised.  If an 
attacker discovers the secret key, the exposure of the data 
(with respect to both time and data quantity) can be limited 
as the key is discarded upon the termination of the session.  
Therefore, for the next session, the attacker would have to 
start again in trying to discover the key.   

 
An advantage with IM conversations is that research 

has found that most IM conversations last an average of 4.5 
minutes  [14].  Therefore the attacker does not have long to 
try to discover the session key before it is discarded.     

 
2. Key Establishment Process 

The key establishment process used for the prototype 
was one where the key establishment was basically a type of 
message authentication where the message was the secret 
key.   The process involves transporting the secret key over 
a communication channel using a combination of a public 
key encryption scheme and a digital signature, shown in 
Figure 3 - Key Establishment Process. 

 
Alice generates an AES symmetric (secret) key and 

encrypts the key using Bob’s public RSA key.  This is sent 
over the channel where Bob decrypts the message using his 
private RSA key and takes an MD5 hash of the key.  This 
ensures that the secret key is shared only with Bob.  
However, Bob still needs to be assured that it was Alice that 
sent him the key.  For that reason, Alice also generates an 
MD5 hash of the AES secret key, encrypts it with her 
private RSA key and sends it to Bob.  Bob then decrypts the 
message using Alice’s public RSA key.  The decrypted 
message is the hash of the secret key that Alice generated.  
Bob compares this hash value with the hash value that he 
generated of the secret key sent in the first message.  If the 
hashes match, then it confirms to Bob that it was Alice that 
sent him the secret key.  There are numerous ways in which 
Alice and Bob can exchange their RSA public keys, such as 
sending it via an email.  One method implemented in the 
prototype is discussed in section VIII.B 

 

Figure 3 - Key Establishment Process 

 
3. Hash Functions 

Hash functions, also known as message digest 
functions, belong under the unkeyed primitive and are the 
most versatile cryptographic algorithms.  Note that a MAC 
is a type of hash function, however it uses a key and is thus 
classed under the symmetric key primitive.  Hash functions 
can be used for authentication, digital signatures and 
encryption.  A hash function operates by taking an input of 
an arbitrarily long message and produces a fixed-sized result 
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called a hash.  The hash is sometimes called a digest, as it is 
basically a compact summary of the message.   

 
A hash function generates a hash by mapping the bits 

of the message string to the bits of a fixed length string.  
Hash functions are known as many-to-one functions.  This 
is because the message string is longer that the fixed string 
it is mapped to, so “many” message bits can be mapped to 
the same fixed string bit.  This characteristic implies that 
collisions (where pairs of different inputs generate identical 
outputs) are unavoidable with hash functions.  In practice, a 
collision is computationally difficult to find, thus collisions 
effectively never occurs. 

 
a) MD5 

MD5 [5]&[6] is a hash function developed by Ron 
Rivest, who also designed its predecessor, MD4 [5].  MD5 
takes an arbitrarily long message string and generates a 128-
bit hash of the message. The message is split into 512-bit 
blocks, with the last block including the message length and 
any padding needed to make it 512 bits long.   

 
The blocks are processed in order using a compression 

function and a 128-bit intermediate state.  The state is split 
into four 32-bit words.  The compression function has four 
rounds in which the message block and the start are mixed 
using a combination of arithmetic and logical operations.  
These operations include addition, XOR, AND, OR and 
rotation operations.  After the four rounds, the compression 
function, the input state and result are added together to 
construct the output of the compression function. 

 
This type of hash function is known as an iterative hash 

function.  By design, if the compression function is collision 
resistant, then the hash function is also collision resistant.  
This has serious implications with the usage of MD5, as the 
compression function of MD5 is known to have collisions 
[Appendix C].  In spite of this, there were no known attacks 
on MD5 itself at the time of implementation.  Another 
problem with MD5 is that its 128-bit hash has a low security 
level whereby a collision can be found in about 264 
evaluations of the hash function. 

 
An alternative hash function that was looked at was the 

Secure Hash Algorithm (SHA-1) [5][6].  SHA-1 is also 
based on MD4, but it generates a 160-bit hash.  The major 
problem with  SHA-1 is that it too has a low security level, 
whereby a collision can be found in 280 evaluations.  NIST 
have published a draft standard that outlines three new hash 
functions based on SHA-1: SHA-256, SHA-384 and SHA-
512 [5][6].  The number after “SHA-” indicates the bit size 
of the hash generated by these functions.  These functions 
are relatively new and have yet to be thoroughly studied, but 
on the other hand, they provide a higher level of security 
than MD5 and SHA-1.  

 
The major reason why MD5 was the chosen hash 

function was that a tradeoff needed to be made in terms of 
security due to the fact that the hash function was to be 

implemented in an MSNP-based system.  The  prototype is 
restricted in the payload space available.  Therefore, the 
smaller hash size of MD5 made it the viable option in this 
context. 

 
4. Digital Signatures 

A digital signature is designed to uniquely identify an 
entity, similar to its handwritten counterpart.  It is a type of 
asymmetric  (or public) key primitive, whereby each entity 
has their own key pair consisting of a public key that can be 
known by anyone (authorised or unauthorised) and a private 
(secret) key that is known only to that entity.  

 
A digital signature scheme is made up of three 

algorithms: 
 

 A random key generation algorithm, that generates a 
key pair 

 A signing algorithm that uses a private key to sign a 
message, creating a signature 

 A verifying algorithm that uses a public key to verify a 
signature 
 
As the signature can be verifiable by a third party 

without needing the signer’s private key, it provides a 
means for non-repudiation.  Digital signatures can also be 
sued for authentication and data integrity.   

 
a) RSA 

The RSA [13] signature scheme is one of the most well 
known and widely used asymmetric key cryptosystems.  
Not only able to provide signatures, RSA can also be used 
for encryption purposes as well.  The details of RSA can be 
found in RSA and [13].  
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VII. INSTANT MESSAGING DESIGN PRINCIPLES 
The prototype requires a communications protocol for 

setting up and managing encrypted sessions between IM 
clients. When designing the protocol to be used by the 
prototype, it was important to define a main objective and 
then identify key areas that needed to be addressed. 

 
The main objective was to create a protocol that 

satisfies the security guidelines of section VI while: 
  
• Maintaining compatibility with IM network 

protocols  
• Allowing easy portability between IM networks 
• Minimising IM protocol knowledge  
• Minimising protocol overhead. 
 
By following these general design rules it was hoped to 

produce a protocol that provided a high level of security 
while still remaining practical and compatible with different 
networks.  The actual implementation of the protocol can be 
found in [Section VIII: Prototype Design]. 

 
A. IM Protocol Compatibility and Portability 

For the encryption add-on to be compatible with an IM 
network, the data it generates must within the guidelines of 
what is allowable on that particular network.  It was also 
important that the protocol be portable between various IM 
networks.  To achieve the best possible compatibility and 
portability the protocol was designed to take advantage of 
similarities between the networks. 
 

1. Embedded Plaintext Commands 

Prior investigation showed that the popular IM systems 
exchange messages in plaintext using either UTF8 or ASCII 
encoding.  A command sent as UTF8 encoded text within a 
message body would therefore be adaptable for use on any 
network. It was decided that the protocol should operate by 
exchanging command sequences embedded within the body 
of a text message. 

 
As using UTF8 encoded commands inside the body of 

an instant message payload is within the parameters of the 
IM network protocols, there is less likelihood of the data 
being rejected by network servers due to ‘irregularity’.  
[figure 4] shows how the encryption protocol is placed 
within the message payload with an Instant Message. 

 
+-----------------+-----------------------+ 
|   IM Protocol   |    Message Payload    | 
+-----------------+-----------------------+ 
 
+-----------------------+-----------+ 
|  Encryption protocol  |  Message  | 
+-----------------------+-----------+ 

Figure 4 - IM Message Payload 

a) Other secure connection methods 
As section VI describes, the encryption protocol takes 

advantage secret-key and public-key encryption algorithms 
and methods.  Many Internet applications that secure 

communications channels with secret-key and public-key 
algorithms currently use Secure Sockets Layer (SSL) or 
Transport Layer Security (TLS).   

 
While TLS and SSL were initially examined as a 

possible way of securing IM, they were found to be 
unsuitable for a number of reasons. 

 
TLS/SSL are based on a client-server relationship and 

are implemented over a special TCP port for the given 
communications protocol.  For example, a secure http 
session (https) would use TLS/SSL over TCP Port 443.  
There are currently no TCP Port allocations for TLS/SSL 
sessions using the MSNP and OSCAR protocols.   

 
In addition, with the exception of some ICQ sessions, 

the public IM networks do not establish direct connections 
between users when message exchanges occur, meaning a 
direct TLS/SSL connection between two subscribers would 
not be possible in most circumstances.  Establishing peer-to-
peer connections or using non-standard ports would 
contravene the design objective of working within existing 
IM protocol parameters. 
 

2. Reduced IM Protocol Knowledge 

The encryption protocol does not rely on information 
generated by or unique to a specific IM protocol.  By 
minimising the amount of information required for the 
protocol to function, it reduces the amount of changes 
needed for use on different networks.  Therefore, the 
protocol deals only with text strings, and contains no 
knowledge of the system in which it is being used. 
 

B. Limiting Additional Information 
The amount of information that can be carried within a 

message payload is limited by the IM protocols [25].  As the 
process of encrypting a plaintext message expands the 
length of the message, it was important to try and minimise 
the amount of additional protocol data sent with the 
ciphertext.   

 
Methods used to reduce the amount of information 

exchanged included using short command codes and not 
transmitting Initialisation Vectors (VIII). 
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VIII. PROTOTYPE DESIGN 
 
A. Message Capture and Encryption Protocol 

The encryption prototype operates by intercepting each 
message typed by the user before it is transmitted to the IM 
server.  It then scans the intercepted text for a special escape 
sequence and command code, which determines whether 
any operation should be performed on the text.  The 
message is then passed back to the IM client for 
transmission. 

 
When receiving messages, this process is reversed.  

Messages are captured by the prototype as they are received 
and are scanned for command codes before being passed 
back to the client for display. 

 
The encryption software operates without knowledge of 

the IM network or client being used, dealing only with text.  
This approach allows the software to be used with any 
plaintext based messaging system with little or no 
modification.  

 
Modifications to the TjMSN client consisted of 

message interception code and minor changes to the 
Graphical User Interface.  

 
1. Escape Sequence 

A special escape sequence was used to identify 
messages that required some form of action.  The sequence 
“###@ ” (including space) was chosen, as it is unlikely to 
proceed any message during a normal conversation.   

 
As text is passed to the add-on, any messages beginning 

with this sequence are further examined for a ‘command 
code’.  Messages that do not contain the escape sequence 
are passed back to the client unaltered and are transmitted to 
the recipient. 

 
2. Command Code 

A two digit numerical code allows the add-on to 
communicate and determines what actions should be 
performed on the plaintext message.  A two digit numerical 
code was chosen rather than a textual code due to the 
limited space available in each message payload.   

 
The structure of the code is similar to the 

implementation used in the OSCAR protocol [25], with 
each code divided into a ‘family’ and ‘instruction’.  A code 
represented by the value XY, for instance, would indicate 
Family X; Instruction Y.  When a command code is 
detected, the appropriate operation is completed and if 
necessary a new command code will be substituted in its 
place. 

 
a) Code Families  

The current protocol consists of four code families, with 
each family defined by the action to be taken.  Table 1 - 

Command Code Families summarises the command codes that 
are currently defined. 

 
Family Code Action performed 

1 Send request for Encrypted Session 
2 Received request and encrypted key 
3 Create and send signature 
4 Received signature for verification 
5 Send acceptance of Request 

1 

6 Received acceptance of request  
1 Message to be Encrypted and 

transmitted 
2 Received encrypted message 
3 Part 1 of split message* 
4 Part n of split message* 

2 

5 Final part of split message* 
0 Start encryption end sequence 
1 Received notification of end 

sequence 
2 De-activate encryption and send final 

end code 

3 

3 Received end code, de-activate 
encryption 

4 1 Generate and send certificate 
 2 Received Certificate 

Table 1 - Command Code Families 

*Commands defined but not currently required in 
prototype 

 
Command codes can be categorised as being either 

internal commands or external commands.  Internal 
commands provide instructions to the local client and can be 
generated by buttons on the chat interface, while external 
commands are generated from within the encryption 
prototype and are transmitted to the remote client.  An 
example of an internal command is the code (11), which, 
when the ‘activate encryption’ button is pressed, tells the 
add-on to generate a new AES key and transmit this to the 
remote user with the external code (12). 
 

3. Secret Key Management and Use 

Each encrypted session uses a shared 256-bit AES key 
which is randomly generated and disposed of after the 
session has been completed.  A 128-bit AES key also 
generated for use with the AES-CBC Message 
Authentication Code (MAC).  

 
a) AES Key Generation 

The 256-bit and 128-bit AES keys are generated on the 
computer of the individual who initially requests an 
encrypted session.  The source of randomness used to create 
the key is Sun’s Pseudo Random Number Generator 
(PRNG) [16].  The 256-bit key is used to encrypt and 
decrypt messages, and also to generate nonce Initialization 
Vectors for the encryption and decryption process.  The 
128-bit key is used to create a MAC of the ciphertext 
generated by the 256-bit key for each message.  
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b) Key Exchange and Authentication 
Once session and MAC keys are generated, they are 

encrypted using the RSA public key of the recipient of the 
encryption request.  An MD5 hash of the combined keys is 
also encrypted using the private key of the initiator, 
producing a digital signature.  The encrypted keys and 
signature are then transmitted to the recipient. 

 
The recipient decrypts the secret keys using their 

private key, and the MD5 hash using the initiators public 
key.  An MD5 hash of the decoded keys is then produced to 
compare with the hash given in the signature.  If the hashes 
match, the keys are saved and the recipient may accept the 
request and an encrypted session may begin.  If the hashes 
do not match then it can be presumed that the data has been 
altered in some way in transit, or incorrect keys were used at 
some stage of the process. 

 
c) Synchronised Message Counters 

When in an encrypted session, a counter kept by both 
users is incremented every time a message is sent or 
received, starting from zero.  This allows each message to 
be uniquely identified by the state of the counter when it 
was sent or received.  The importance of the synchronised 
counter is explained in the sections Message Encryption and 
Nonce Initialization Vectors. 

 
d) Message Encryption 

Messages are encrypted using a 256-bit AES key 
initialised in CBC mode with PKCS#7 Padding.  The 
encrypted blocks are cycled using a random Initialisation 
Vector, its source being derived from the message counters.  
A Message Authentication Code is added to the ciphertext 
message to ensure that the ciphertext is not altered in transit. 

 
e) Nonce-generated IV 

An integer message counter is used with the secret key 
to create a nonce-generated IV for each message that is to 
be encrypted.  Starting from 0, the message counter is 
synchronised between the users and increments by 1 for 
each message.  The state of the counter n is encrypted using 
the secret session key k for every message, producing value 
k(n), which is used as a source of randomness to initialize 
the AES cipher before encrypting or decrypting a message.  
The value of k(n) used to encrypt and decrypt a message can 
never be re-used.  It can be considered random as k is 
unique to every session, while any instance of n can be used 
only once per session. 

 
An advantage of using the synchronised message 

counters to create the IV is that the IV need not be 
transmitted with the encrypted message.  This prevents an 
attacker from replaying any messages to the users, while it 
also prevents an attacker from blocking messages, as this 
would cause the counters to become out-of-sync.  Not 
transmitting the IV also helps to reduce the protocol 
information in the message payload. 

 
A drawback of the nonce-generated IV system is that 

due to the process of converting an integer counter to a type 
suitable for generating the IV, a limit of 10,000 messages is 
applied to each session.  This can be seen as an acceptable 
limitation, as the number of messages sent using a single 
key should be limited for security reasons. 

 
f) Message Authentication Code 

Before the ciphertext is transmitted, a MAC is created.  
The prototype uses the AES CBCBlockCipherMAC method 
provided by the Bouncy Castle package.  The 128-bit secret 
key is used for this function, which produces a 32-bit 
sequence.  This sequence is added to the front of the 
ciphertext message before transmission.  When a message 
arrives, the received MAC is compared with a newly 
generated MAC of the received ciphertext.  Matching 
MACs will allow the message to be deciphered.   

 
4. RSA Key Generation and Management 

The Java KeyTool utility was used to generate and store 
the RSA public/private ‘key pairs’ used when developing 
the software, although other methods are available.  This 
process is shown in KeyTool.  X.509 Certificates (public 
keys) exported from a KeyStore can be transported in a 
number of ways, such as email or on diskette or flash drive.  
The add-on also contains the ability to export and import 
X.509 public keys from within the IM client. 

 
B. Key Generation, Exchange and Authentication 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5 - Key Generation and Exchange 
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Figure 6 – Interfacing Prototype with TjMSN

 
C. Protocol Processes in Detail 

 
1. Interfacing Prototype with TjMSN 

Figure 6 – Interfacing Prototype with TjMSN above shows the 
main interfaces and classes used to provide encryption.  
TjMSN classes are highlighted blue while the prototype 
classes are yellow.  The code of these classes can be found 
in the appendix. 

 
SortIM provides the main link between TjMSN and the 

encryption code.  When a new chat session is established, 
TjMSN executes the InstantMessageGUI class, which 
provides an area for sending and viewing messages (Figure 7 - 

TjMSN Conversation Window).  Additional code written into 
InstantMessageGUI initialises SortIM at the same time, and 
begins diverting messages sent or received. 

 
When a message is to be sent, SortIM first analyses it 

for a command code, before passing it back to 
InstantMessageGUI which forwards it to MSNInterface.  
Received messages are passed straight to SortIM before 
being passed to InstantMessageGUI for display.  This 
occurs whether or not encryption is active.  Information is 
passed between the classes as plaintext strings. 

 
Although SortIM is responsible for managing the 

encrypted sessions, it does not have any knowledge of the 
IM network protocols. 

 
The classes RSAManager, AESCrypt and AESGen are 

accessed as needed by sortIM, as is the user’s keystore file.  
The encryption classes have no knowledge of either the 

MSN Protocol or the encryption protocol and will simply 
perform a function on a string of text. 

 

 
Figure 7 - TjMSN Conversation Window 

2. Protocol Functions 

This section details the sequence of command codes 
when performing the main functions of the prototype. 

 
a) Activate Encryption 

When a user requests and encrypted session, the 
internal command codes “###@ 11 ” and “###@ 13 ” are 
generated and sent as two successive instant messages.  
These messages are detected by the SortIM before being 
transmitted and are replaced with two new messages, the 
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first being “###@ 12 +encrypted keys” and the second 
being “###@ 14 +Signature”.  That is, the initial code (11) 
causes the software to generate the two AES keys, encrypt 
these with the public key of the recipient and transmit with 
the command code (12).  The second code (13) causes the 
software to transmit the digital signature associated with the 
encrypted keys with the command code (14). 

 
Upon receiving the first code (12), the keys are 

decrypted and saved.  When receiving second code (14) the 
signature is verified and, if valid, the user is shown a dialog 
box allowing them to accept or decline the request.  If 
accepted, the internal code (15) is generated to activate 
encryption using the saved key and to transmit the request 
accept code (16).  When the requester receives the accept 
code (16), encryption is activated. 

 
The diagram below shows the internal and transmitted 

codes during this sequence. 
 
 
User 1 Transmitted User 2 

 
Request 

Encryption  
###@ 11 

 
###@ 13 

 
 

Start session 

 
###@ 12 +keys 

 
 

###@ 14 +sig 
 
 

###@ 16 

 
 

Store keys 
 

if signature 
valid and 

accept request, 
###@ 15 

 
 
 

Figure 8 - Activate Encryption 

b) Encrypted Message Exchange 
During an encrypted session the internal command code 

“###@ 21 “ is added to the front of each message to be sent.  
This informs the add-on that the message should be 
encrypted.  The text “###@ 22 +message“is encrypted, and 
a MAC is produced from this ciphertext.   

 
The receiver first checks the MAC and, if valid, will 

decode the ciphertext.  The command code (22) is then 
recognised and the message text is passed to TjMSN for 
display. 

 
User 1 Transmitted User 2 

 
Encrypt and 
Send Message 

###@ 21 
 

 

 
Ciphertext+MAC 

 
 

 
 

MAC ok? If yes 
decipher and 

display message 
 

Figure 9 - Encrypted Message Exchange 

c) End Encrypted Session 
When either user decides to end the encrypted session, 

the internal code (30) is generated.  This in turn causes the 
message “###@ 31 “ to be encrypted and transmitted.  Upon 
receiving the code (31), the internal code (32) is generated.  
The (32) code de-activates the encryption and replies with 
the code (33), used to confirm that encryption has been de-

activated.  When the initiator receives the (33) command, 
encryption is turned off and a confirmation message is sent 
in plaintext. 

 
User 1 Transmitted User 2 

 
End Encryption 

selected 
###@ 30 

 
Encryption Off 
 

 
###@ 31 

 
 

###@ 33 
 

 
 
 

Encryption off 
###@ 32 

 
 

Figure 10 - End Encrypted Session 

 
Encryption can also be ended simply by closing the 

messaging window (all keys and configurations are 
discarded). 

 
d) Export Public Key Certificate 

When “export public key” is selected by a user, the 
internal code (41) is generated.  This code causes the public 
key associated with the configured private key alias to be 
retrieved and converted into an X.509 certificate encoded in 
base64.  This is then transmitted as “###@ 42 

+certificate”.  Upon being received the certificate can be 
named and is stored in the directory of TjMSN. 
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IX. PROTOTYPE TESTING 
As the prototype matured testing switched from ‘test 

harness’ console programs to testing on the MSN Network.  
This process involved observing the behaviour of the 
prototype while undertaking regular IM conversations.  The 
section Software Demonstration shows the use of the 
prototype under normal circumstances.  The Performance 
Considerations section contains analysis of the time delay 
introduced in the process of encrypting and decrypting 
messages on a number of systems.  

 
A. Software Demonstration 

 
1. Preliminary information 

After being compiled, the modified TjMSN client used 
for demonstrating the prototype is packaged into a single 
Java Archive (JAR) executable.  The file can be run from 
either the command line using ‘java –jar filename.jar’ 
or by double clicking the icon from within an operating 
system GUI.  Java KeyStore files are placed in the same 
directory as the JAR file. 

 
A simple demonstration of was undertaken to show the 

setup of an encrypted session and a small exchange of 
encrypted information.  The test was performed using two 
Windows XP machines on the same LAN connected to the 
MSN Messenger network. 

 
Data traffic generated by the clients was captured using 

the ‘Ethereal’ packet sniffing software. The filter string 
[21]“tcp port 1863” was used so that only MSNP related 
data was captured, allowing for easier inspection.  

 
Excerpts of captured data are shown in ASCII format 

rather than hexadecimal, as MSNP is an ASCII based 
protocol [25].  As such, commands such as ‘new line’ (\n) 
and ‘carriage return’ (\r) have also been omitted.   
Information not directly relating to the encrypted exchange, 
such as TCP/IP/Ethernet header fields have been omitted.  
The captured information is shown from the perspective of 
the principle who is receiving the request for an encrypted 
session. 

 
2. Demonstration 

Initially a chat session was established by launching the 
Instant Messaging GUI.  A menu has been added to this 
window allowing control over the various encryption 
options.  This menu is shown in Figure 11 - Encryption Menu. 

 

 
Figure 11 - Encryption Menu 

 
At this stage, any instant messages are exchanged in 

plaintext.  The following excerpt shows how the message 
“hello” appears when received:  

 
MSG captainrushrush@hotmail.com nigel 69 
MIME-Version: 1.0 
Content-Type: text/plain; charset=UTF-8 
 
hello 

 
Before an encrypted conversation can take place, both 

users must configure the Java KeyStore that they are using, 
using the ‘Certificate Setup’ option from the menu.  The 
dialog box for Certificate Setup is shown in Figure 12 - Enter 

KeyStore Information Dialogue.  
 

 
Figure 12 - Enter KeyStore Information Dialogue 

 
Filename: The name of the KeyStore file 
Password: The password used to access the KeyStore 
Private Key Alias: The name assigned to the Private 
Key to be used during encryption. 
 
The KeyStore file is placed in the same directory as the 

TjMSN JAR file.  The details supplied are tested for validity 
after “OK” is pressed. 

 
Once both parties have configured the KeyStore, the 

‘Activate Encryption’ option can be used to initiate key 
exchange.  Selecting this option opens the ‘Alias 
Configuration’ dialog shown in Figure 13 - Enter KeyStore Alias 

Dialogue. 
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Figure 13 - Enter KeyStore Alias Dialogue 

Local Alias: The alias for the private key stored locally 
(a.k.a. Private Key Alias). 
Remote Alias: The public key alias of the recipient of 
the request.  This key is used to encrypt the secret key. 

 
Once “OK” is pressed, 256-bit and 128-bit AES keys 

are generated, encrypted using the public key of the 
recipient, and transmitted.  An MD5 hash of the key is also 
made, which is encrypted using the private key of the 
requester and is sent immediately after the secret keys.  The 
encrypted keys, as received, are shown in the following 
excerpt. 

 
MSG captainrushrush@hotmail.com nigel 246 
MIME-Version: 1.0 
Content-Type: text/plain; charset=UTF-8 
 
###@ 12 OA5rd8xeF/pt85Kqko4zeKrf0XeyM9acYYKOcFj 
ZO9XVOsSKOcVzqCy7FyNeL9pB8qfBtIqQT6KeO4tgqpd+2Y
aJLoyzpOgTGlHZuS1xJJOMZSRkqk3G+9as9b5RAr1Pkvphf
Ped9R+SZaQ7oA6oadd1akhBO8HPsRuX9iMJ5dg= 

 
It is important to note the MIME header of the 

incoming message.  The “content-Type: text/plain” 
signifies that this information has been transmitted as a 
standard message.  The first line simply indicates the MS 
Passport of the sender and their ‘nickname’. 

 
The code at the beginning of the payload is recognised 

by the software as being encrypted AES keys.  The string is 
decrypted and the keys are saved as key objects to be used if 
the request is accepted.  No other action is taken at this 
point. 

 
The following message immediately follows the first.   
 
MSG captainrushrush@hotmail.com nigel 246 
MIME-Version: 1.0 
Content-Type: text/plain; charset=UTF-8 
 
###@ 14 5C5iXd/NHGCDQefBrnZ8eSx9qXQcC7AvEX+or9v 
WqUdQ0JXRro/fzzsoT2Ynr+OfD3nAhfznAspjqf+OMbN/qI
FwqPxuMFDEp00icQnKQ9KFuGSsjFdK3TOmbaESyH1LoeGOK
CECnjmyT5y20jIiHY8SulKFaYNtVVJgxruT8VU=  

 
It contains an MD5 hash of the keys encrypted with the 

private key of the sender.  The hash is decoded using the 
public key of the sender and compared with an MD5 hash of 
the previously decoded keys.  If the hashes do not match, a 
message is sent notifying the sender of this and the keys are 
discarded.  A successful hash will cause the dialogue box 
shown in Figure 14 - Enable Encryption Session Dialogue to appear. 

 

 
Figure 14 - Enable Encryption Session Dialogue 

 
Answering ‘no’ or ‘cancel’ results in the key being 

discarded and the requester being notified.  Answering yes 
results in the following message being transmitted: 

 
MSG 3 N 70 
MIME-Version: 1.0 
Content-Type: text/plain; charset=UTF-8 
 
###@ 16 

 
This message, when received by the requester, will 

inform them that the request has been accepted and will 
place their client into encrypted mode.  All communications 
between the clients is now encrypted using the secret key. 

 
For demonstration purposes, the message “hello, how 

are you?” was sent.  The following shows the data as 
transmitted over the Internet. 

 
MSG captainrushrush@hotmail.com nigel 106 
MIME-Version: 1.0 
Content-Type: text/plain; charset=UTF-8 
 
Ns8K/4==5B5+RU3c/KNaDkuWr0/SWskVj78QHw6FniDjt6G
v3+U= 

 
The (MAC) is first removed and a new MAC is 

generated using the 128-bit key and the ciphertext.  If the 
MAC matches, the string is decrypted and the original 
message is passed to the client.  Replying to this message 
with “good” produced the following output: 

 
MSG 8 N 86 
MIME-Version: 1.0 
Content-Type: text/plain; charset=UTF-8 
 
mt57KN==awNph3Yr3YO2EVcdGSreYg== 

 
At this stage, any protocol control information is also 

encrypted to prevent a third party from tampering with the 
conversation by sending dummy commands. 

 
To end an encrypted session, a user simply selects the 

option from the menu.  This sends a notification to the other 
user and upon receiving acknowledgment the encryption is 
de-activated.  The users are notified in the message history 
window that the encryption has been de-activated.  The 
following sequence shows the initial end encryption 
command as received. 



 
 
 
 
CAIA Technical Report 041123A November 2004   Page 24 of 55 

 
MSG captainrushrush@hotmail.com nigel 94 
MIME-Version: 1.0 
Content-Type: text/plain; charset=UTF-8 
 
Rg85aQ==Dbgyvh8q5yC0hPq/tnci0Q== 

 
Encryption is then de-activated and the following 

message is automatically sent in reply: 
 
MSG 6 N 70 
MIME-Version: 1.0 
Content-Type: text/plain; charset=UTF-8 
 
###@ 33 

 
This message informs the other user that encryption has 

been de-activated.  The image below shows the messages 
seen in the history window from the perspective of the 
initiator. 

 

 
Figure 15 - Encryption Deactivation Message 

When receiving a public key exported by another user, 
the following dialog box appears: 

 

 
Figure 16 - Certificate Alias Dialogue 

 
This is the name of the file in which the received 

certificate is stored.  Pressing cancel will discard the 
received certificate.  When ‘OK’ is pressed, the following 
information appears in the received message window: 

 

 
Figure 17 - Certificate Storage Confirmation 

 
Although this certificate can now be imported and used 

to decrypt information, it is highly recommended that the 
users confirm the authenticity of the certificate by verifying 

the certificate fingerprint over some out-of-band channel, 
such as by telephone.   
 

B. Performance considerations- Benchmarks 
Encryption can be a mathematically intensive process 

and thus a certain amount of CPU overhead is incurred as a 
result of encrypting or decrypting a message.  This overhead 
is noticed as a time delay as the plaintext is converted to 
cipher text. 

 
Due to the near-realtime nature of instant messages, it 

was important to observe the delay introduced by an 
encryption process of the specifications used in the add-on.  
By recording the time-delay experienced on a number of 
different systems it is possible to predict the approximate 
performance on a given configuration.  This in turn can 
indicate the baseline configuration for tolerable 
performance. 

 
1. Benchmark Design 

To simplify the testing process it was decided that the 
benchmarks should consist of standalone Java console 
applications.  This allowed for easy installation and testing 
on various machines and did not require an active internet 
connection. 

 
The java classes used to perform the encryption in the 

benchmarks were the same classes used in the final 
implementation of the software.  This was done to ensure 
that the results provided would reflect the time delay 
experienced using the actual software.  Special ‘test 
harness’ classes were written to access the encryption 
functions, provide ‘dummy’ information and to perform 
timing.  

 
2. Limitations due to Clock Time Granularity 

The method System.currentTimeMillis(); located in 
java.lang.System was used to time the length of the 
various operations.  As its name suggests, this method 
returns the time of the system accurate to three decimal 
places.  The time elapsed was recoded by calculating the 
difference between the time obtained before and after an 
operation was called.  

 
A limitation of this method is that the accuracy of the 

time obtained is dependant on the Time Granularity [22] of 
the system clock.  Time granularity can be defined as the 
time interval that elapses between successive updates of the 
system clock.  It may also be described as the effective 
resolution of the system clock.  This interval varies between 
operating systems and different configurations of the same 
operating system.  Time granularity causes timing 
inaccuracies for very short periods of time System Clock 
Granularity. 

 
Therefore, to increase the accuracy of the 

measurements, it was necessary to extend the length of the 
operations being timed.  This was done by placing the 
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operation in a loop and dividing the resulting time by the 
number of loops performed. 

 
The results obtained provide an approximate guideline 

to of prototype performance.  
 

3. Test Machines 

The benchmarks were run on a number of different 
systems that might typically be found in an office and also 
on a significantly outdated system for comparison.  This 
included both desktop and portable systems.  All machines 
were tested using the J2SDK 1.4.2 with the Bouncy Castle 
Provider and ‘unlimited strength’ US Export Policy 
installed. 

 
System A AMD Athlon XP2400+ 

512MB RAM 
Windows XP Pro SP1 

System B Apple iBook G4 800Mhz 
384MB RAM 
Apple OS 10.3.5 

System C Intel Pentium M 1.4Ghz 
256MB RAM 
Windows XP Home SP1 

System D Intel Celeron 400Mhz 
256MB SDRAM 
Windows 2000 Pro SP1* 

System E Intel Pentium 4 2.66Ghz 
512MB RAM 
Windows 2000 Pro SP3 

Table 2 - System Properties 

The benchmark was run on each machine three times, 
with the average of these three results being shown in the 
graphs which follow.  The complete table of results can be 
found in System Clock Granularity. 

 
4. AES Benchmark 

The AES benchmark tested the three symmetric key 
functions used by the add-on, those being key generation 
and encryption/decryption in CBC mode.  Early trials found 
the encryption and decryption process taking less than 
16ms, so a loop was used to increase the time interval 
between polling the system clock.  The number of loops 
used was 50,000.   

 
Two different length strings were used in the 

benchmark, simulating a short sentence (58 bytes) and a 
longer sentence (108 bytes) that would be typical of an IM 
conversation.  An example of the program output is shown 
in [Figure 18].  Although capable of generating an AES key, 
the benchmark would not run correctly on the MAC OSX 
system, thus AES results for the iBook have been omitted. 

 

 
Figure 18 - AES Testbench Example 

 
a) Key Generation 

The following graph Figure 18 - AES Testbench Example 
shows the average time taken for each system to generate 
the AES key.  This operation was not looped.  
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Figure 19 - Average Time for AES Key Generation 

Intel processors have a notable speed advantage in 
generating AES keys, as these results show.  Although 
System D did not show a high average performance, the 
complete results tables show that on two of three occasions 
it was able to generate the key at roughly the same speed as 
System A. 

 
b) AES Encryption Functions 

The following graphs show the average of the results 
obtained from the AES benchmark.  Each operation was 
looped 50,000 times. 
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Figure 20 - AES Encryption with 58-byte String 
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Figure 21 - AES Encryption with 108-byte String 
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Figure 22 - AES Decryption with 58-byte String 
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Figure 23 - AES Decryption with 108-byte String 

 
The results show that the AES encryption functions are 

quite fast, even on the slowest machine used.  For example, 
System D took between 0.015ms and 0.020ms for 
encrypting the 108 and 58 byte strings.  The more modern 
processors were able to stay below 0.006ms for all of the 
operations.  These times suggest that it is extremely unlikely 
that users would notice any additional delay in the exchange 
of messages due to the AES operations. 

 
A conversation between two clients using a machine of 

the specifications of System A might expect an additional 
0.010ms of latency, a near instantaneous period of time. 

 
5. RSA Benchmark 

The RSA benchmark first generated an AES key (as the 
message) before timing the following operations:  

• Signing a message 
• Encrypting message with a public key 
• Decrypting message with private key 
• Verifying a signature 
• Encoding with private key 
• Decrypting message with public key.   

 
As asymmetric encryption is more processor intensive 

than symmetric, the operations were looped 500 times.   
Figure 24 - RSA Testbench Example shows the output of the RSA 
benchmark program. 

 

 
Figure 24 - RSA Testbench Example 
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The following graphs show the result averages for the 

RSA benchmark program.  Although ‘encoding with private 
key’ was included in the benchmark, a graph of the results is 
not shown as this function is not specifically used on its 
own by the prototype (it is used in combination with an 
MD5 hash).  The results are included in table form in 
Benchmark Tables of Results. 
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Figure 25 - Average Time for RSA Signing 
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Figure 26 - Average Time for RSA Encryption 
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Figure 27 - Average Time for RSA Decryption (Private Key) 
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Figure 28 - Average Time for RSA Message Verification 
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Figure 29 - Average Time for RSA Decryption (Public Key) 

 
RSA functions took considerably longer than AES, as 

expected.  The most time consuming tasks were those 
related to authentication, as signing and verifying messages 
are both two-part processes.  However, the results for the 
signing and verifying benchmarks suggest that the main 
cause of delay is not from the RSA algorithm itself but 
through creating the MD5 hash. 

 
For example, verifying a message requires that the 

received ciphertext is decoded using the public key of the 
sender, after which an MD5 hash is taken of the message for 
comparison.  The ‘decode with public’ graph shows the 
decoding process to be relatively quick, with a time of 
4.5ms for the slowest system.  This would suggest that, on 
the same system, a signature given for verification might 
take roughly 5ms to decode and 70ms to create and compare 
MD5 hashes.  

 
‘Encode with private’ also supports this, as measured 

private key encryption times occupy only a small percentage 
of the total time taken to sign a message.   
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By adding the results in terms of sequence-of-
occurrence it is possible to estimate the approximate delay 
expected when using the RSA functions.  For example, the 
processing time required to initiate an encrypted session 
between two machines of System D specifications would be 
(including key generation time for the two AES keys): 
 

Key generation: 586ms 
Encode AES key with public: 5.6ms 
Sign message: 114ms 
Total: 412.6ms 
Decode AES key with private: 4.3ms 
Verify signature: 74.4ms 
Total: 78.7ms 

 
In this scenario, the time elapsed between one user 

requesting an encrypted session and the other having the 
option to accept or reject the offer is approximately 883ms 
in addition to any network latency.  While this may seem 
like a long delay, the figure is approximately 271ms in 
addition to network latency when using a relatively recent 
system such as System A.  The fast AES key generation 
ability of recent Intel processors further reduces this time 
delay. 

 
It should be noted that the RSA functions are used only 

at the beginning of an encrypted session, after which the 
significantly faster AES encryption is used.  In actual use, 
the RSA-caused delay was found to be quite acceptable. 
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X. DISCUSSION 
A number of design constraints had to be considered 

when trying to achieve a balance between information 
security objectives and a practical solution.  As IM is a near 
real-time exchange of short messages, speed and message 
size were critical issues. 

 
When choosing cryptographic algorithms, an important 

assessing factor become the speed at which the algorithm 
could operate for the required level of security.  A slow 
algorithm would introduce a noticeable latency to the 
conversation, while a fast but insecure algorithm would not 
meet security requirements. 

 
The most crucial factor, it turns out, was not the 

encryption algorithms themselves but the speed and size of 
the hashes used to authenticate the encrypted messages, as 
shown in the performance testing.  This compromise on 
hashes can be seen in the use of CBC-MAC and MD5 in the 
place of algorithms that are more secure, but unsuitable for 
IM systems. 

   
CBC-MAC, which gives 64-bit security, was used in 

favour of the slower and larger HMAC, while MD5 
provides a 64-bit hash at a greater speed than a more 
desirable but larger hash such as SHA-256.  While these 
hashes are not the strongest solutions cryptographically, 
they provide a practical balance between high security and 
reduced size and delay. 
 

Additionally, the cryptographic world is constantly 
evolving and new algorithms became available later in the 
design that would have been useful during the development 
process.  An alternative to using RSA was to use the Elliptic 
Curve Cryptography (ECC) system [28].  ECC has the 
advantage of having what is known as a ‘strong key’.  This 
means that a shorter ECC key would provide the same 
security as a longer RSA key.  For example, a 160-bit ECC 
key would provide the same level of security as a 1024-bit 
RSA key.  

 
An algorithm with such small keys would significantly 

reduce the amount of data transmitted during secret key 
exchange, possibly reducing the number of steps required.  
The code libraries used in the project did not include ECC 
until late in the development stage when Java released 
JDK5.0. 

 
An issue that emerged later in the development stage 

was that of user interface and user interaction.  Originally 
not given the same weighting of importance as technical 
issues, it became apparent that the user interface and how 
the user interacted with the prototype functions was also a 
significant factor in protocol design. 

 
Overall, when designing such a cryptographic system, 

the importance of planning becomes apparent.  Such 
systems are only as strong as the weakest link, and the 

group found that careful planning made work easier and 
produced a more secure system. 
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XI. RECOMMENDATIONS 
The prototype was designed as an interim solution 

while managers developed an IM usage policy or 
implemented enterprise IMs.  IM usage in the workplace has 
greatly increased in prominence over the last several years, 
and as such will likely receive more attention from 
management in terms of policy and the integration of 
enterprise IM solutions.  Therefore, the lifespan of the 
prototype is expected to be short.   

 
This means that although there is room for 

improvements can be made with the prototype, some 
elements are sufficient to last over the expected lifespan of 
the application. 

 
For example, the lifespan of AES is expected to be 

about 10-20 years [6].  AES was standardised at the end of 
2001, so the lifespan of AES is expected to surpass that of 
the prototype.  Therefore, at this point in time, there is no 
need to consider replacing AES. 

 
There are, however, a number of improvements that 

can be made in the short term.  The tradeoffs mentioned in 
the Discussion section need to be further evaluated, taking 
into account recent changes in cryptographic code libraries.  
For example, replacing RSA with ECC might be a 
consideration as it reduces the key length used. 

 
The current use of MD5 and CBC-MAC, while 

sufficient, is not ideal.  A more comprehensive analysis of 
hash and MAC algorithm combinations to find an optimal 
balance between security, speed and size would be part of 
further development on the prototype. 

 
A more exhaustive test of the Sun PRNG would also be 

undertaken.  Finding a good source of randomness is crucial 
when generating the secret keys used for message 
encryption.  Further tests on the PRNG would provide an 
indication of its long-term viability.  

 
The method by which the public keys are exported 

could be made more secure by adding authentication 
functionality.  Currently, when Alice and Bob exchange 
public keys, it is done so over an insecure channel.  
Although public keys can be known by anyone, Eve can still 
cause difficulties by intercepting the public key and 
replacing it with one that Eve had generated. 
 

A GUI improvement would be to provide an indication 
to the user as to whether they are currently in an encrypted 
conversation or not.  This was attempted during the 
development but the group was unable to integrate such a 
function consistently as there are several bugs in the TjMSN 
code.   

 
Lastly, simplified key generation and management, 

perhaps through the inclusion of a dedicated GUI tool, 
would provide an easy way for users to manage their 

asymmetric keys, as the current console-based method is not 
user-friendly. 
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XII. CONCLUSION 
Instant messaging has expanded greatly from its 

humble beginnings as an Internet gossiping application.  IM 
applications are now widely used in the workplace for many 
purposes such as organising impromptu meeting and 
obtaining real-time answers to work related queries. 

 
A major problem with workplace IM usage is that 

insecure public IM networks are more widely used than 
more secure enterprise IM systems.  In addition, managers 
have yet to be proactive in developing an acceptable IM 
usage policy or considering enterprise IM.   

 
The concept behind the prototype was that it would be 

used as a short-term solution to the current security 
problems that public IM usage in the workplace posed.  
Additionally, the context of use that was focused on was for 
small companies that did not have the monetary funds or 
technical resources to consider alternative solutions, or 
companies consisting of several people communicating over 
the Internet.  Several current solutions to the public IM 
problem were identified, but must be purchased and thus do 
not provide for the context that was focused on.  

 
The solution that was decided upon was to design and 

develop an IM add-on that implemented information 
security objectives that would not adversely affect any IM 
functionalities.  To do this, some tradeoffs were made in 
terms of level of security and IM operational characteristics.  
These solutions still provided the level of security required, 
though. 
 

Testing found that the prototype was able to function 
well in the manner designed, and performed all functions as 
expected.  The speed at which encrypted messages were 
exchanged was in fact faster than expected and the 
prototype did not negatively affect the real-time 
characteristic of IM applications.  Recent cryptographic 
code library updates to include algorithms such as ECC also 
provide new avenues of refining and improving the 
prototype.   

 
Overall, the prototype was able to demonstrate the 

plausibility of encryption over a public IM network, and 
with additional testing and development, could provide 
simple and free cryptographic solution. 
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XIV. APPENDICES 
A. Cryptographic Primitives 

Cryptographic algorithms can be grouped into classes 
known as cryptographic primitives.  There are three 
primitives: unkeyed, symmetric keyed and asymmetric 
keyed.  

 
1. Unkeyed Primitives 

Unkeyed algorithms do not use any keys in the 
generation of their output.  An example of this type of 
algorithm is arbitrary length hash functions, the main 
subclass of unkeyed algorithms.  Hash functions generate a 
hash value known as a “hash” or “message digest”.  The 
input of a hash function is just the message to be hashed.  
Hash functions are used in are one of the most versatile 
cryptographic algorithms and are used for many purposes 
such as being part of digital signature and key establishment 
schemes.    

 
Other types of unkeyed algorithms include one-way 

permutations and random sequences.  Unlike hash 
functions, these functions on their own do not provide any 
sort of cryptographic utility, however they can be 
implemented as part of the mathematical computations 
involved in other cryptographic algorithms. 

 
 
 
 
 
 
 
 
 
 
 

 

Figure 30 - Unkeyed Cryptographic Primitives 

2. Symmetric Key Primitives 

Symmetric key algorithms use a single key as one of its 
inputs to manipulate data.  The keys used in these functions 
are shared only with authorised entities and kept secret from 
everyone else. Hence, such algorithms are also known as 
secret key algorithms.  

 
 
 
 
 

 

 

Figure 31 - Symmetric Key Cryptographic Primitives 

Symmetric key algorithms have numerous applications 
such as providing confidentiality, data integrity and 
authentication as well as form part of a key establishment 
process. 

 
There are two major types of symmetric key 

algorithms: Message Authentication Codes (MACs) and 
symmetric key ciphers.  The primary purpose of MACs is to 
provide data origin authentication.  MACs are also able to 
detect message tampering, thus providing data integrity 
checks.  A MAC function takes a secret key and an arbitrary 
sized message and generates a fixed sized MAC value.  This 
MAC value is sent with the encrypted message.  The 
receiver generates a MAC value of the encrypted message 
and checks to see whether it matches the MAC value that 
was sent with the message.  If there is a match, then the 
message has not been tampered with.  

 
Symmetric key ciphers can be further broken down into 

to classes: stream ciphers and block ciphers. Block ciphers 
operate by breaking up an arbitrarily sized plaintext 
message into fixed sized blocks.  These blocks are 
encrypted one at a time.  There are three main classes of 
block ciphers: substitution, transposition and product 
ciphers.  Substitution block ciphers substitute symbols or 
groups of symbols with other symbols or groups of symbols 
within a block.  Transposition ciphers perform permutations 
on the symbols within a block.  Alone, both substitution and 
transposition ciphers provide low levels of security.  To 
overcome this, the operations of substitution and 
transposition ciphers are combined.  This is what a product 
cipher is.   

 
Stream ciphers can be thought of as a type of block 

cipher whereby the block size is one.  They operate quicker 
than block ciphers and have the advantage of not 
propagating transmission errors.  The main disadvantage of 
stream ciphers is that although stream cipher theory has 
been studied intensively, most stream ciphers implemented 
in current systems are proprietary and therefore secret.  This 
leads to a lack of official documentation and standardised 
code libraries for stream ciphers.  
 

3. Asymmetric Key Primitives 

Asymmetric key algorithms use a set of two related 
keys known as a key pair.  A key pair consists of a public 
key and a private key.  This is why asymmetric key 
algorithms are also known as public key algorithms.  A 
private key is only known to the entity that owns the key 
pair whereas a public key can be known to anyone, 
regardless of whether they are authorised by the owner 
entity. The important point is that the relationship between 
the public and private keys is such that the private key 
cannot be ascertained through knowing the public key.   

 
An advantage of such algorithms is that the key 

exchange does not have to be done over a secure channel.  
However, it is necessary to authenticate the public keys 



 
 
 
 
CAIA Technical Report 041123A November 2004   Page 34 of 55 

through data origin authentication to provide assurance that 
the owner of the public key is the intended communication 
partner. This is done through key establishment techniques, 
such as the one outlined in VI.E. 

 
Asymmetric key algorithms are normally used in 

calculating digital signatures, establishing cryptographic 
material and for authentication schemes.  

 
 
 
 
 
 
 
 
 
 
 

Figure 32 - Asymmetric Key Cryptographic Primitives 
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B. Advanced Encryption Standard (AES) 
The Advanced Encryption Standard (AES) is a US 

government standardised block cipher.  It was standardised 
through NIST, who had asked for submissions from the 
cryptographic community for a new block cipher algorithm.  
Out of the 15 submissions, the Rijndael algorithm was 
chosen to become AES.  The Rijndael algorithm specifies a 
symmetric block cipher that processes block lengths of 128 
bits using symmetric keys with sizes of 128, 192 or 256 bits.  
Rijndael was designed to handle other block sizes and key 
lengths, however these were not implemented as part of the 
AES standard. 

 
One round of AES encryption is shown in Figure 33 - One 

Round of AES.  The plaintext message is broken into blocks of 
128 bits.  Each block is encrypted separately.  AES consists 
of 10-14 rounds, with each round using a round key derived 
from the symmetric key and one block of the plaintext 
message.  The number of rounds depends on the size of the 
key.  Each round can be thought of as a weak block cipher.  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 33 - One Round of AES 

The first step is to break the 128-bit plaintext block into 
16 bytes.  The 16 bytes can be thought of as a 4x4 matrix of 
one byte (8 bits) called a State array.  The round key is also 

broken up in the same manner and then XOR with the State 
array.   

 
Each byte is used as an index into an S-box 

(substitution box), which maps the input byte to an output 
byte value.  The transformation operation used in this step is 
a non-linear byte transformation that operates independently 
on each input byte.  The S-boxes used are identical and its 
contents are publicly known (Figure 34 - S-box Used in AES 

Encryption).   
 
The State array is then put through a row shifting 

transformation.  Each row, other than the first row, is shifted 
cyclically over an offset.  The offset depends on the row 
number.  For example, the first row is row number 0, so it is 
not shifted.  The second row is row number 1, so it is 
cyclically shifted by one position.   

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
The final step is to perform a mixing transformation on 

the State array.  Each column is treated as a four term 
polynomial and multiplied by a fixed polynomial.  
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This process is repeated for 10-14 rounds.  In the 
final round, instead of the mixing transformation, the round 
key is XOR once again with the State array.  This makes the 
algorithm reversible during decryption.  The total number of 
rounds depends on the size of the key.  Table 3 - Key-Block-

Round Combinations lists the number of rounds in relation to 
the key size.   
 

 Key Length 
(in words) 

Block Size 
(in words) 

Number of 
Rounds 

128-bit 
key 

 
4 

 
4 

 
10 

192-bit 
key 

 
6 

 
4 

 
12 

256-bit 
key 

 
8 

 
4 

 
14 

Table 3 - Key-Block-Round Combinations  

Each of the transformations are invertible, therefore 
similar steps can be used to perform the decryption, but in a 
reverse order.  The decryption process consists of an initial 
round plus nine rounds of transformations, totalling in the 
ten rounds required for a 128-bit key.  The initial decryption 
round consists of the following steps: 

1. XOR round key 
2. Inverse byte substitution transformation 
3. Inverse row shifting transformation 

The next nine rounds consists of the following steps: 

1. XOR round key 
2. Inverse mixing column transformation 
3. Inverse byte substitution transformation 
4. Inverse row shifting transformation 

The inverse byte substitution involves using an S-box 
with the contents being the inverse of the contents of the S-
box used in encryption (Figure 35 - Inverse S-box Used in AES 

Encryption).  The inverse row shifting operation involves the 
same step as that in the encryption transformation, except 
that the rows are shifted to the left.  The first row in the 
multiplication matrix is changed for the inverse mixing 
column transformation.  Other than that, the mixing column 
transformation executes in the same manner as in the 
encryption process [10]. 

1. Key Expansion 

To generate the round keys from the symmetric key, a 
method called the key expansion is used.  The key 
expansion operation is performed before encryption begins.  
The symmetric key must be expanded to be long enough to 
provide enough keying material for the multiple round keys.  
Each round key is made up of a different section of the 
expanded symmetric key.  The number of round keys need 
to be one more than the number of rounds as the round key 
is used twice in final round.  Therefore, the total number of 
bytes required is: 

 

16 x (number of rounds + 1)  
 
When a 128-bit (16 byte) key is used, the expanded key 

must be 1408 bits (176 bytes) long.  The symmetric key 
always makes up the first bytes in the expanded key.  So for 
a 16 byte key, the first 16 bytes of the expanded key is the 
symmetric key. 
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Figure 34 - S-box Used in AES Encryption  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 35 - Inverse S-box Used in AES Encryption 
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C. Collision Attacks 
A collision occurs when a function provides the same 

output for two different input values.  When a collision 
occurs, it can possibly leak information to an adversary such 
as what secret key is currently being used.  Collision attacks 
are a type of cryptographic attacks that take advantage of 
the fact that there is a certain probability that collisions will 
occur in a cryptographic system after a certain period of 
time.  There are two main types of collision attacks: 
birthday and meet in the middle.   

 
1. Birthday Attacks 

Birthday attacks make use of the fact that collisions 
occur in a shorter time period than would be expected.  It is 
named after the birthday paradox, whereby the probability 
of two people having the same birthday out of a group of 23 
people exceeds 50%.  This is a high probability when the 
fact that there are 366 possible birthdays is taken into 
consideration.  

 
An example of how this attack works is where a 64-bit 

key is used for a particular operation, it is expected that 
there are 264 (18 billion) possible key values to select from.  
Therefore, it would seem that the attacker would have a 
difficult time trying to figure out the key being used.  In 
actual fact, the attacker could expect to see the same key 
being used after approximately 232 operations.  If the 
attacker can ascertain that the same key is being used, then 
the system is susceptible to possible attacks, namely data 
insertion of old messages from the attacker. 

 
In general, if there are n different possible values, then 

it is expected that the first collision will occur after 
approximately √n random elements have been chosen.  The 
birthday bound, which is related to this hypothesis, defines 
the fact that a collision is expected to occur after 2n/2 
elements have occurred.   

 
2. Meet in the Middle Attacks 

A more common collision attack is the “Meet in the 
middle” attack.  The way this type of attack works is that 
instead of waiting for a collision to occur, a set of keys can 
be randomly generated by the attacker and used as a 
reference when the attacker eavesdrops on a communication 
exchange.  For example, in a situation where a MAC is used 
and the system uses the same first message to the user (such 
as a welcome message or a confirmation request), the 
attacker can randomly choose a set of keys and generate 
MAC values for the first message using these keys.  The 
MAC values are stored in a table.  In the event that the same 
MAC value is sent over the channel the attacker is listening 
in on, then it is highly probable that the key that is being 
used in the communication exchange is the same key that 
the attacker used to generate the MAC value.   

 
 
This allows the attacker to insert any messages that the 

attacker chooses to generate into the communication 

exchange instead of just replaying old messages like with 
birthday attacks.  This makes meet in the middle attacks 
more useful than birthday attacks.  However, for both 
birthday and meet in the middle attacks, a collision can be 
expected to occur within the same number of elements.     
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D. Cipher Block Chaining (CBC) 
The Cipher Block Chaining (CBC) mode is the most 

commonly used mode in current systems.  It is a type of 
confidentiality mode where the encryption method involves 
“chaining” plaintext blocks to previous cipher text blocks.   

 

Figure 36 - CBC Encryption and Decryption 

 
The CBC encryption function (Figure 36 - CBC Encryption 

and Decryption) uses an input of the previous ciphertext block 
ci-1, where i ≥ 0. This is then XOR with the plaintext block 
pi. The result is inputted into the cipher function E (in the 
case of the project, E is AES) to produce the ciphertext ci.  
As each CBC encryption cycle requires the previous 
ciphertext as an input, the encryption operation cannot be 
processed in parallel. 

 
The CBC decryption function uses the ciphertext ci as 

the input into the inverse cipher function E-1.  This is then 
XOR with the previous ciphertext block.  The operation 
produces the output pi’ which should be equal to the 
plaintext message pi.  As the input of the decryption 
function (the ciphertext ci) is immediately available, there 
can be multiple decryption operations processed in parallel. 

 
 

Figure 37 - CBC Encryption and Decryption for the First Cycle 

In the case of the first block, as there is no previous 
ciphertext block, an IV is used instead.  Therefore, c0 is the 
IV.  

 

The advantage of CBC is that it does not have a 
problem when encrypting two plaintext blocks that are the 
same.  In ECB, if two plaintext blocks are the same, then the 
resultant ciphertext block will also be the same.  CBC 
solves this problem by chaining the previous ciphertext 
block to the plaintext block, so that the plaintext blocks that 
are the same will be chained to different ciphertext blocks. 

 
For the plaintext message to be recovered successfully, 

the sender and receiver need to have their IVs synchronised.  
The IVs used should not be the same as the problem with 
ECB is introduced for the first block of each message.  As 
messages often start in a similar or identical manner, the 
message blocks would be the same (or similar).  If the same 
IV is used then it is possible for the same ciphertext block to 
be generated.  This provides information to the attacker.  
How IVs can be generated is discussed in Initialisation 
Vector (IV) Generation Methods. 
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E. Initialisation Vector (IV) Generation Methods 
There are several ways to generate the IV value used in 

CBC.  These include counter IV, random IV and nonce-
generated IV. 

 
1. Counter IV 

A counter IV uses zero for the first message, one for 
the second message and so on.  The main disadvantage of 
using this method is that numbers in sequence have a similar 
sequence when represented in binary format.  As many 
messages start in a similar manner, the IVs could cancel out 
the minor differences between the starting messages, as the 
IVs are also similar.  For example, if the IVs differ in 
exactly one bit and the start of two messages only differ in 
one bit then the ciphertext blocks may be identical due to 
the IVs cancelling out the differences.  Even if the 
differences are not cancelled out, if the differences are only 
minor, an attacker can still use cryptanalysis to make 
presumptions about the messages being exchanged. 

 
2. Random IV 

Another solution to the IV problem is to use a random 
IV.  As stated in the CBC section, the sender and receiver 
need to have their IVs synchronised to successfully recover 
the plaintext message.  Consequently, the first ciphertext 
block (c0) is the random IV value.  Because the first block 
does not contain any plaintext, the resultant ciphertext block 
would be one block longer than the plaintext, with the extra 
block being the random IV block.  This is a major 
disadvantage if the messages are short as it results in 
significant message expansion.  Another disadvantage is 
that the encryption algorithm will need a source of 
randomness, which requires a lot of overhead if a good 
random generator is to be implemented. 

 
3. Nonce-generated IV 

The term nonce is derived from the phrase number used 
once.  The nonce is a unique number that is not used twice 
with the same encryption key.  The nonce is normally a 
message number.  Since most communication systems 
require a message number to be implemented, using a nonce 
will not create any message overheads. The IV is then 
generated by encrypting the nonce with the block cipher 
implemented in the system.   

 
The following steps describe how a nonce-generated IV 

is used in CBC: 
 

1. A message is assigned a message number.  Normally 
the message number is generated by a counter, starting 
at zero. 

2. The message number is used as the unique nonce. 
3. The IV is generated by encrypting the nonce with the 

block cipher (in the case of the project, the block cipher 
is AES). 

4. CBC mode is then used to encrypt the message, using 
the nonce-generated IV. 

5. Additional information is added to the ciphertext, such 
as attaching the message number to the ciphertext.  This 
is to ensure that the receiver can generate the same 
nonce.  The IV is not sent with the message. 

6. Ensure that the receiver accepts one message at a time 
by rejecting any messages with a message number that 
is less than or equal to the message number of the last 
received message. 
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F. RSA 
The RSA algorithm was developed by Ronald L. 

Rivest, Adi Shamir, and Leonard Adleman in 1977 and 
published in 1978.  It is a commonly used cryptosystem that 
provides both encryption and digital signature 
functionalities.     

 
1. Key Generation 

The following steps outline the basic operations 
involved in generating an RSA key pair. 
 
1. Find two large (say, between 1024 and 4096 bits) prime 

numbers, p and q. Use these numbers to compute n = 
pq. 

2. Choose an exponent e where e is greater than one, an 
odd number and less than n.  Also, e and (p-1)(q-1) 
need to be such that they do not have any prime factors 
in common. 

3. Calculate the multiplicative inverse of e, known as d.  
This can be done through finding an integer x that 
produces an integer result for the equation d = (x(p-
1)(q-1)). 

 
The public key is the pair (n, e).  Hence, e is known as the 
public exponent.  The public key can be known by anyone 
as there is currently no known way to derive d, p or q 
through knowing the public key (n, e).  The private key is d.  
Consequently, d is known as the private exponent.  It is 
imperative that d be kept secret from other entities. 

 
2. Public Key Encryption 

The encryption function for RSA is c = me mod n, where 
c is the ciphertext and m is the plaintext message.  Both the 
ciphertext and the plaintext are positive integers.  The value 
of m must be less than n.  It can be seen that for RSA 
encryption, the public key is used. 

 
For RSA decryption, the function is fundamentally the 

same, except that the private key is used instead of the 
public key.  The decryption function is p = cd mod n.  

 
3. Digital Signatures 

Generating digital signatures in RSA involves the same 
calculations used in encrypting and decrypting.  To sign a 
plaintext message, the entity that owns the private key 
computes a signature s = m1/e mod n.  The signed message is 
therefore (m, s).  This signature can be verified by any entity 
that knows the corresponding public key.  This is done 
using the function se = m mod n. 
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G. KeyTool 
1. About Key Tool and Important Terms 

KeyTool is a Java command line utility that is used to 
create, manage and secure asymmetric keys and certificates 
in Java KeyStore files.  Public keys can be exported from 
the KeyStore as one of a number of certificate types.  Public 
keys of other persons can be imported into a KeyStore using 
the KeyTool utility.   

 
There are a number of important terms in regards to 

items and processes when using the Java KeyTool.  An alias 
refers to the name given to a particular item, such as a 
public key, within the KeyStore.  A store is the name used 
to access the keystore, which is the name of the keystore 
file.  A provider is the cryptographic suite that provides the 
encryption algorithms for the keystore. 

 
Although the following sections provide some examples 

of using keytool via command line, a number of programs 
exist that provide a graphical interface for creating and 
editing keystore files.  These programs are the KeyStore 
Explorer [23], which can be purchased from $US30 for a 
single user license, and Portecle [24] can be downloaded for 
free. 
 

2. Generating RSA Key Pairs 

The Bouncy Castle Cryptographic Provider was used to 
generate the RSA keys required for encryption.  This 
provider was used as the Sun Provider as in JDK1.4.2 did 
not contain support for the RSA algorithm. 

 
To generate an asymmetric key-pair the following 

command was entered from the console: 
 

keytool -genkey -alias <alias> -keyalg RSA -
keysize 1024 (or 2048) -sigalg MD5withRSA -
keystore <storename>.ks -storepass <password> -
storetype jks 

 
Keytool then provides prompts for additional 

information, such as the name of the key-pair owner and the 
expiry date of the key.  This information can also be entered 
in the initial command if desired. 

 
3. Importing X.509/CER Files 

Public keys are exchanged as specially encoded 
certificate files.  These files can be exchanged via disk, 
email or via the ‘export public key’ function in the add-on.  
If using email or the export function, it is important to verify 
the fingerprint of the certificate.  See KeyTool for an 
example of how this is done. 

 
To import a key file, for example “alicecert.cer” into 

Bob’s keystore, the following command would be used: 
 
Keytool –import –alias alice –file alicecert.cer –
keystore bobstore –storepass password 

 

A prompt then asks whether this certificate is to be 
trusted, to which ‘yes’ is entered.  The public key is now 
stored within Bob’s keystore with the alias “alice”. 

 
4. Verifying Received Certificate 

It is recommended that public key certificates be 
exchanged in person using a diskette rather than through the 
export function of the add-on.  If this is not possible, 
however, it is necessary to manually check the MD5 
fingerprint of the received key to ensure it has not been 
subject to any man-in-the-middle attack. 

 
After importing the certificate, the fingerprint can be 

obtained by typing the command: 
 
Keytool –list –keystore <storename> -storepass 
<password> 

 
This lists the certificates contained within the keystore 

and their MD5 fingerprint.  Imported certificates will appear 
as ‘trustedCertEnrty’, while private keys will appear as 
‘keyEntry’.  The example below shows the keyEntry 
fingerprint for a certificate. 

 
nigel, 3/09/2004, keyEntry, 
Certificate fingerprint (MD5): 
41:3A:0E:27:E1:A5:E2:F0:07:2B:EC:D2:88:03:48:2E 

 
The received public key certificate contains the same 

fingerprint as the keyEntry certificate.  Therefore, the 
fingerprint should be confirmed (over the phone, for 
instance) by comparing the fingerprint of the received 
certificate against the certificate contained in the original 
keyEntry. 
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H. System Clock Granularity 
For example, a Windows XP system may have a clock 

granularity of 15-16ms and would report the following 
times if it were polled on a 10ms basis. 

 
System Time Poll Interval 
06:05:14.000 0ms 
06:05:14.000 10ms 
06:05:14.015 20ms 
06:05:14.030 30ms 
06:05:14.030 40ms 
06:05:14.046 50ms 
06:05:14.060 60ms 

Table 4 - System Clock Granularity 

In the above example, the clock granularity is larger 
than the polling interval.  Thus, when the first 10ms interval 
has elapsed, the clock is still reporting the time 
06:05:14.000 – it has yet to be updated.  After 20ms have 
elapsed, the clock has been updated to reflect a time of 
06:05:14.015. After 30ms the polling interval falls in line 
with the clock update, and the time is reported accurately.  
At 40ms, the clock has yet to refresh, thus the time is still 
reported as 06:05:14.030.  50ms shows that the interval 
was 16ms, as the reported time is 06:05:14.046. The final 
poll at 60ms also coincides with the clock update, giving a 
system time of 06:05:14.060.  

 
As can be seen, the accuracy of currentTimeMillis() 

can vary significantly over short timed intervals.  It could be 
said that the margin of error for the system above would be 
± 16ms.  For short period of time, such as 30ms, ± 16ms 
would represent a margin of error of over 50%.  Intervals 
less than 15ms would simply appear as 0ms. 

 
In contrast, ± 16ms of a 300ms operation roughly 

represents a 5% margin of error, which is much more 
acceptable than 50%.  Therefore, where possible, all timed 
functions were placed into a loop to decrease the margin of 
error and hence increase the accuracy of the result. 
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I. Benchmark Tables of Results  
The following tables contain the results of each trial 

conducted in the benchmarks.  Adjusted figures indicate that 
the total time has been divided by the number of loops, 
giving the average time for an individual operation. 

 
1. AES Benchmark Results 

AES Key generation 

System Time(ms) 

110 

100 

A 

110 

30 

31 

C 

30 

661 

110 

D 

110 

80 

30 

E 

20 

Table 5 - AES Key Generation  

AES 58-byte String, 50,000 loops 

System Encrypt(ms) Decrypt(ms) 

200 161 

200 171 

A 

200 160 

250 211 

240 210 

C 

241 210 

961 811 

962 821 

D 

962 821 

160 140 

161 130 

E 

160 140 

Table 6 - AES Encryption and Decryption of 58-byte String 

 
AES 108-byte String, 50,000 loops 

System Encrypt(ms) Decrypt(ms) 

161 160 

171 160 

A 

160 160 

200 210 

210 201 

C 

210 210 

761 771 

751 781 

D 

761 781 

130 130 E 

130 130 

 130 130 

Table 7 - AES Encryption and Decryption of 108-byte String 

AES 58-byte String Adjusted figures 

System Encrypt(ms) Decrypt(ms) 

0.004 0.00322 

0.004 0.00342 

A 

0.004 0.0032 

0.005 0.00422 

0.0048 0.0042 

C 

0.00482 0.0042 

0.01922 0.01622 

0.01924 0.01642 

D 

0.01924 0.01642 

0.0032 0.0028 

0.00322 0.0026 

E 

0.0032 0.0028 

Table 8 - AES Encryption and Decryption Adjusted Figures (58-byte) 

AES 108-byte String Adjusted figures 

System Encrypt(ms) Decrypt(ms) 

0.00322 0.0032 

0.00342 0.0032 

A 

0.0032 0.0032 

0.004 0.0042 

0.0042 0.00402 

C 

0.0042 0.0042 

0.01522 0.01542 

0.01502 0.01562 

D 

0.01522 0.01562 

0.0026 0.0026 

0.0026 0.0026 

E 

0.0026 0.0026 

Table 9 - AES Encryption and Decryption Adjusted Figures (108-
byte) 
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2. RSA Benchmark Results 

 
 
 

RSA Benchmark 500 Loops time in milliseconds 

System Sign encode public decode private verify signiture decode public 

11566 491 6640 7310 400 

11496 491 6620 7260 390 

A 

11797 531 6670 7300 400 

29952 1443 14381 15983 951 

29688 1444 14382 15985 950 

B 

29664 1456 14362 15993 945 

16053 751 10586 10895 641 

15713 681 10044 10656 601 

C 

15472 681 9894 10666 591 

56602 2844 32857 36102 2123 

56632 2613 33098 37834 2233 

D 

59095 2955 34289 37624 2214 

10946 531 7210 7831 430 

10976 500 7231 7811 441 

E 

10913 521 7200 7882 441 

Table 10 - RSA Benchmark Results (500 Loops)

 
RSA Benchmark adjusted time in milliseconds 

System Sign encode public decode private verify signiture decode public 

23.132 0.982 13.28 14.62 0.8 

22.992 0.982 13.24 14.52 0.78 

A 

23.594 1.062 13.34 14.6 0.8 

59.904 2.886 28.762 31.966 1.902 

59.376 2.888 28.764 31.97 1.9 

B 

59.328 2.912 28.724 31.986 1.89 

32.106 1.502 21.172 21.79 1.282 

31.426 1.362 20.088 21.312 1.202 

C 

30.944 1.362 19.788 21.332 1.182 

113.204 5.688 65.714 72.204 4.246 

113.264 5.226 66.196 75.668 4.466 

D 

118.19 5.91 68.578 75.248 4.428 

21.892 1.062 14.42 15.662 0.86 

21.952 1 14.462 15.622 0.882 

E 

21.826 1.042 14.4 15.764 0.882 

Table 11 - RSA Benchmark Results (Adjusted Figures) 
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J. Selected Prototype Source Code 
The source code in the following sections is from the main prototype java classes. 
 

1. SortIM 

/* This will take an Instant Message which has been given an escape sequence 
   and identify the command code given to allow processing as appropriate. */ 

 
/* 
 * sortIM.java 
 * 
 * Created on 25 April 2004 
 */ 
  
package au.edu.swin.jn; 
 
import com.tomjudge.TjMSN.*; 
import com.tomjudge.TjMSNLib.*; 
 
import java.io.*; 
import java.util.*; 
import javax.crypto.Cipher; 
import javax.crypto.KeyGenerator; 
import javax.crypto.spec.*; 
import javax.crypto.*; 
import javax.swing.*; 
import java.security.Key; 
import java.security.cert.*; 
 
public class sortIM 
{        
 private String trimMessage; 
 private String cmdCode; 
 private String codedMsg; 
 private String toEncode; 
 private String toDecode; 
        private String decodedMessage; 
         
        private String storeName; 
        private String storepass; 
        private String aliasLocal; 
        private String aliasRemote; 
         
        private boolean sendReply; 
        private boolean encryptionStatus; 
        private boolean endEncryptSent = false; 
         
        String AESkey = null; 
        String CBCkey = null; 
        String decodedPrivate; 
        int messageCounter = 0; 
        newAlias getAliasDialog; 
  
//    byte[] theKey = genKey(); 
    AEScrypt encrypter; 
    AEScrypt decrypter; 
    AESGen keyGen; 
    RSAmanager test; 
     
     
/* Command Code summery  
* 
*  Code            Function 
* 11  Request encrypted session 
* 12  Receive request for encrypted session 
* 13  Acceptance of request 
*       14              Recieve Acceptance 
*       15              Send signature 
*       16              Recieve signature 
* 21  Message to be encrypted and transmitted 
* 22  Message to be decrypted 
* 23  Part 1 of split message for re-assembly and decryption 
* 24  Part n of split message 
* 25  Final part of split message 
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* 30  End Session command 
*       31              Recieve End Session command 
*       40              Message part 1 of cert 
*       41              recieve part one 
*       42              cert message part 2 
*       43              recieve part two 
*/ 
     
 public sortIM(boolean status) 
 { 
           encryptionStatus = status; 
        } 
         
        public String sort(String aMessage) { //make a public variable for aMessage and use that for 

decrypt? 
            if (encryptionStatus)  
            { 
                if (aMessage.startsWith("###@ ")) 
                { 
                    cmdCode = aMessage.substring(5,7); 
                     
                    if (cmdCode.matches("21"))  
                    { 
                        activeEncryption(); 
                        toEncode = aMessage.substring(8); 
                        encrypter = new AEScrypt(AESkey, messageCounter); // also want to pass 

messagecount to create the IV 
                        trimMessage = toEncode; //for history pane 
                        String ciphertext = encrypter.encrypt("###@ 22 " +toEncode); // Encrypt the 

message for transmission 
                         
                        codedMsg = encrypter.getMac(CBCkey, ciphertext)+ciphertext; 
                        messageCounter++; //increment the counter 
                    } 
                     
                    else if (cmdCode.matches("30")) //sending 
                    { 
                        activeEncryption(); 
                        trimMessage = "notice to de-activate encryption"; 
                        encrypter = new AEScrypt(AESkey, messageCounter); 
                        String ciphertext = encrypter.encrypt("###@ 31 "); 
                        codedMsg = encrypter.getMac(CBCkey, ciphertext)+ciphertext; 
                        endEncryptSent = true; 
                     } 
                    else if (cmdCode.matches("33")) 
                    { 
                        if (endEncryptSent) { 
                        noEncryption(); 
                        trimMessage = "encryption has been de-activated"; 
                        sendReply = false; 
                        messageCounter = 0; } 
                    } 
                       
                } 
                else 
                { 
                    decrypter = new AEScrypt(AESkey, messageCounter); //(theKey, IV) 
                    String recievedMac = aMessage.substring(0,8); 
                    boolean result = decrypter.verifyMac(CBCkey, aMessage.substring(8), recievedMac); 
                    if (result) { 
                    decodedMessage = decrypter.decrypt(aMessage.substring(8));  
                    cmdCode = decodedMessage.substring(5,7); } 
                    else 
                        { 
                    decodedMessage = "###@ 22 Bad MAC message discarded";  
                    cmdCode = decodedMessage.substring(5,7);  
                    } 
                    messageCounter++; 
                     
                    if (decodedMessage.startsWith("###@ ")) 
                    { 
                        if (cmdCode.matches("22")) 
                        {  
                            activeEncryption(); 
                            trimMessage = decodedMessage.substring(8); //decoded msg for display 
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                            sendReply = false; 
                        } 
                        else if (cmdCode.matches("31")) //recieving 
                        { 
                            noEncryption(); 
                            trimMessage = null; 
                            codedMsg =  "###@ 32 "; 
                            sendReply = true; 
                            messageCounter = 0; 
                        } 
                    } 
                } 
            } 
            else 
            { 
                cmdCode = aMessage.substring(5,7); 
                if (cmdCode.matches("11")) //request for encryption 
  { 
                    noEncryption(); 
                    trimMessage = "you have requested an encrypted session";  
                    keyGen = new AESGen(); 
                    AESkey = keyGen.genKey();  
                    CBCkey = keyGen.getCBCKey(); 
                    test = new RSAmanager(storeName, storepass, aliasLocal, aliasRemote); //to replace 

with variables 
                    String encmsg = test.encodeMessagePublic(CBCkey+AESkey);                    
                    codedMsg = "###@ 12 " +encmsg; //AESkey variable replaced by the result of public 

key encryption 
 
  } 
  else if (cmdCode.matches("12")) //recieve request for enc 
  { 
                    noEncryption(); 
                    trimMessage = "wishes to start an encrypted session"; 
                     
                    test = new RSAmanager(storeName, storepass, aliasLocal, aliasRemote); //to replace 

with variables 
                    decodedPrivate = test.decodeMessagePrivate(aMessage.substring(8)); //take off 

cmdCode, decode and save AESkey 
                    AESkey = decodedPrivate.substring(24); 
                    CBCkey = decodedPrivate.substring(0,24); 
                    //no need for anything else, the ###@ 16 will directly follow 
                    sendReply = false; 
  } 
                else if (cmdCode.matches("13")) // sending a 13 
                { 
                    //set the variable to say that encryption is enabled 
                    noEncryption(); 
                    test = new RSAmanager(storeName, storepass, aliasLocal, aliasRemote); 
                    String signed = test.signMessage(CBCkey+AESkey); 
                    codedMsg = "###@ 14 "+signed; 
                    trimMessage = "awaiting confirmation"; 
                } 
  else if (cmdCode.matches("14")) //recieving a 14 
                { 
                    //set the variable to say that encryption is enabled 
                    noEncryption(); 
                    test = new RSAmanager(storeName, storepass, aliasLocal, aliasRemote); 
                    test.verifyMessage(decodedPrivate, aMessage.substring(8)); 
                    boolean theResult = test.verResult(); 
  
                    if (theResult)  
                    { 
                        int r = JOptionPane.showConfirmDialog(null, "Enable encrypted session?"); 
                        if (r == JOptionPane.YES_OPTION)  
                        { 
                            codedMsg = "###@ 15 "; 
                            trimMessage = null; 
                            sendReply = true; 
                        } 
                        else  
                        { 
                            codedMsg = "the request has been denied"; 
                            trimMessage = "you denied the request"; 
                            sendReply = true; 
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                        } 
                    } 
                    else 
                    { 
                        trimMessage = "signature did not match"; 
                        codedMsg = "The signature did not match, request cancelled"; 
                        sendReply = true; 
                    }  
                     
                } 
                else if (cmdCode.matches("15")) //sending a 15 
                { 
                    activeEncryption(); 
                    codedMsg = "###@ 16 "; 
                    trimMessage = "Encryption activated"; 
                } 
                else if (cmdCode.matches("16")) //receiving 
                { 
                    activeEncryption(); 
                    trimMessage = "request accepted. session encrypted"; 
                    sendReply = false;    
                } 
                else if (cmdCode.matches("41")) //sending 
                { 
                    RSAmanager rsaMan = new RSAmanager(storeName, storepass, aliasLocal, aliasRemote); 
                    codedMsg = "###@ 42 " +rsaMan.exportLocalCert(); 
                    trimMessage = "you have exported your public key"; 
                } 
                else if (cmdCode.matches("42")) //recieving 
                {  /* MUST CHECK TO ENSURE THAT KEYSTORE HAS BEEN CONFIGURED */ 
                     
                    try { 
                    byte[] dec = new sun.misc.BASE64Decoder().decodeBuffer(aMessage.substring(8));  
                    getAliasDialog = new newAlias(null, true); 
                    getAliasDialog.show(); 
                    String userAlias = getAliasDialog.getNewAlias(); 
                    if (userAlias != null) { 
                        /* READING IN AND CREATING THE CERT */ 
                        ByteArrayInputStream bais = new ByteArrayInputStream(dec); 
                        BufferedInputStream bis = new BufferedInputStream(bais); 
                        CertificateFactory cf = CertificateFactory.getInstance("X.509"); 
                        X509Certificate cert = null; 
                        while (bis.available() > 0) { 
                              cert = (X509Certificate)cf.generateCertificate(bis);  
                        } 
                              byte[] buf = cert.getEncoded();     
                              FileOutputStream os = new FileOutputStream(userAlias+".cer"); 
                              os.write(buf); 
                              os.close(); 
                              trimMessage = "the certificate has been saved as: " +userAlias +".cer. Use 

keytool -import -alias <alias> -file <file.cer> -keystore <keystore> -keypass <keypass> to import the 
file."; 

                    } 
                    else { 
                    trimMessage = "not imported"; 
                    } 
                     
                } 
                 catch (Exception e) { 
                    e.printStackTrace(); 
                    } 
                 
                } 
                else if (cmdCode.matches("32"))   
                    { 
                        codedMsg = "###@ 33 "; 
                        trimMessage = "Encryption has been de-activated"; 
                    } 
            } 
            return null; 
 } 
  
 public String getTrim() 
 { 
            return trimMessage; 
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 } 
  
 public String getCoded() 
 { 
            return codedMsg; 
 } 
    
        public void activeEncryption() 
        { 
            encryptionStatus = true; 
        } 
         
        public void noEncryption() 
        { 
            encryptionStatus = false; 
        } 
         
        public boolean getEncryptionStatus() 
 { 
            return encryptionStatus; 
 } 
         
        public boolean sendReplyMsg() 
        { 
            return sendReply; 
        } 
         
        public void setKeystore(String store_name, char[] store_pass) 
        { 
            storeName = store_name; 
            storepass = new String(store_pass); 
        } 
         
        public void setAlias(String local_alias, String remote_alias) 
        { 
            aliasLocal = local_alias; 
            if (remote_alias != null) { 
                aliasRemote = remote_alias; 
            } 
             
        } 
} 
 
 

2. AESCrypt 

/* 
 * AEScrypt.java 
 * This class looks after the creation of AES key, and also performs the 
 * encryption and decryption of message.  TODO: The IV should be obtained using 
 * the supplied message number. (unless random IV is used) 
 * Created on 9 September 2004, 13:21 
 */ 
package au.edu.swin.jn; 
 
import java.lang.*; 
import javax.crypto.KeyGenerator; 
import javax.crypto.spec.IvParameterSpec; 
import javax.crypto.*; 
import javax.crypto.spec.*; 
import java.security.Key; 
import java.security.NoSuchAlgorithmException; 
import java.security.Security; 
import java.security.*; 
import org.bouncycastle.crypto.macs.*; 
import org.bouncycastle.crypto.engines.*; 
import org.bouncycastle.crypto.params.*; 
  
/** 
 * 
 * @author  nigel 
 */ 
public class AEScrypt { 
    Cipher ecipher; 
    Cipher dcipher; 
    Cipher IVcipher; 
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    SecretKeySpec skeySpec = null; 
    SecretKeySpec CBCSpec = null; 
    IvParameterSpec ips; 
    CBCBlockCipherMac macHash; 
    boolean macResult; 
     
    /** Creates a new instance of AEScrypt */ 
    public AEScrypt(String keyString, int messageCounter) { 
        try { 
 
             
            byte[] keyAgain = new sun.misc.BASE64Decoder().decodeBuffer(keyString);  //base64 key string 

to byte 
            skeySpec = new SecretKeySpec(keyAgain, "AES");                           //make a usable key 

object from this 
             
            ecipher = Cipher.getInstance("AES/CBC/PKCS7Padding","BC"); 
            dcipher = Cipher.getInstance("AES/CBC/PKCS7Padding","BC"); 
            IVcipher = Cipher.getInstance("AES","BC"); 
             
            String ivString = Integer.toBinaryString(messageCounter); 
            byte[] iv = ivString.getBytes();             
            IVcipher.init(Cipher.ENCRYPT_MODE, skeySpec); 
            byte[] encIV = IVcipher.doFinal(iv); 
            ips = new IvParameterSpec(encIV); 
             
            AESEngine a = new AESEngine(); 
            macHash = new CBCBlockCipherMac(a,32); 
             
        } 
        catch (Exception e) { 
            e.printStackTrace(); 
        } 
    } 
     
    /* TODO: Perhaps use counters so that the IV need not be sent. */ 
 
    public String encrypt(String str) { 
    try { 
 //     ecipher.init(Cipher.ENCRYPT_MODE, skeySpec,secRandom); 
        ecipher.init(Cipher.ENCRYPT_MODE, skeySpec, ips); 
        byte[] utf8 = str.getBytes("UTF8");                 //get UTF8 bytes from String 
        byte[] enc = ecipher.doFinal(utf8);                 //do the encryption 
        return new sun.misc.BASE64Encoder().encode(enc);    //return base64 encrypted string 
    } 
    catch (Exception e) { 
            e.printStackTrace(); 
    } 
    return null; 
    } 
     
    public String decrypt(String str) {   
    try { 
        String encString = str; 
//      dcipher.init(Cipher.DECRYPT_MODE, skeySpec, new IvParameterSpec(aes_iv)); 
        dcipher.init(Cipher.DECRYPT_MODE, skeySpec, ips); 
        byte[] dec = new sun.misc.BASE64Decoder().decodeBuffer(encString);      //Base64 String to byte 
        byte[] decoded = dcipher.doFinal(dec);                                  //decrypt the byte 
        return new String(decoded, "UTF8");                                     //Convert byte to UTF8 

string 
    } 
    catch (Exception e) { 
            e.printStackTrace(); 
        } 
    return null; 
    } 
    public String getKey() 
    { 
        String keyString = new sun.misc.BASE64Encoder().encode(skeySpec.getEncoded()); 
        return keyString; 
    } 
    public String getMac(String CBCkey, String message) 
    { 
        try { 
        byte[] CBCAgain = new sun.misc.BASE64Decoder().decodeBuffer(CBCkey); 
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        CBCSpec = new SecretKeySpec(CBCAgain, "AES"); 
         
        byte[] stringBytes = message.getBytes(); 
        byte[] hash = new byte[4]; 
        macHash.init(new KeyParameter(CBCSpec.getEncoded())); 
        macHash.update(stringBytes,0,stringBytes.length); 
        int blah = macHash.doFinal(hash,0); 
        macHash.reset(); 
        return new sun.misc.BASE64Encoder().encode(hash); 
        } 
        catch (Exception e) { 
            e.printStackTrace(); 
        } 
        return null; 
    } 
    public boolean verifyMac(String CBCkey, String message, String theMac) 
    { 
         
        try { 
            byte[] CBCAgain = new sun.misc.BASE64Decoder().decodeBuffer(CBCkey); 
            CBCSpec = new SecretKeySpec(CBCAgain, "AES"); 
         
            byte[] stringBytes = message.getBytes(); 
            byte[] hash = new byte[4]; 
            macHash.init(new KeyParameter(CBCSpec.getEncoded())); 
            macHash.update(stringBytes,0,stringBytes.length); 
            int blah = macHash.doFinal(hash,0); 
            macHash.reset(); 
            String newMac = new sun.misc.BASE64Encoder().encode(hash); 
            if (theMac.equals(newMac)) { 
               macResult = true; } 
            else {  
                macResult = false; } 
            } 
        catch (Exception e) { 
            e.printStackTrace(); 
        } 
        return macResult; 
    } 
} 
 

3. RSAManager 

/* 
 * RSAmanager.java 
 * 
 * Created on 2 September 2004, 13:32 
 */ 
 
package au.edu.swin.jn; 
 
import java.lang.*; 
import java.io.*; 
import javax.crypto.*; 
import java.security.Provider; 
import java.security.cert.*; 
import java.security.*; 
/** 
 * 
 * @author  nigel 
 */ 
public class RSAmanager { 
     
    char[] ksPass = null; 
    KeyStore ks = null; 
    PrivateKey privKey = null; 
    X509Certificate remote_cert = null; 
    X509Certificate local_cert = null; 
    String local_alias = null; 
    String remote_alias = null; 
    String storepass; 
    byte[] theSig = null; 
    boolean testResult = false; 
     
    KeyPair pair; 
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    /** Creates a new instance of RSAmanager */ 
    public RSAmanager(String keystore_file, String store_pass, String aliasLoc, String aliasRem) { 
        try { 
        local_alias = aliasLoc; 
        remote_alias = aliasRem; 
        storepass = store_pass; 
         
        Security.addProvider(new org.bouncycastle.jce.provider.BouncyCastleProvider()); 
        ks = KeyStore.getInstance("JKS","SUN"); 
        ks.load(new FileInputStream(keystore_file), storepass.toCharArray()); 
        } 
        catch (Exception e) { 
            e.printStackTrace(); 
        } 
         
    } 
    /* take an MD5 of message and ecnrypts with a private key */ 
    public String signMessage(String theMessage) { 
        try { 
            Signature signature = Signature.getInstance("MD5WithRSA"); 
            signature.initSign((PrivateKey) ks.getKey(local_alias, storepass.toCharArray())); 
             
            ByteArrayOutputStream baos = new ByteArrayOutputStream(); 
            DataOutputStream dos = new DataOutputStream(baos); 
         
            String sr = theMessage; 
            byte[] utf8 = sr.getBytes("UTF8"); 
            dos.write(utf8); 
            //dos.writeUTF("a string of sorts"); 
            byte[] arrayBytes = baos.toByteArray(); 
             
            ByteArrayInputStream bais = new ByteArrayInputStream(arrayBytes); 
            DataInputStream dis = new DataInputStream(bais); 
         
            byte[] buffer = new byte[arrayBytes.length]; 
            int length; 
            while ((length = dis.read(buffer)) != -1) 
            signature.update(buffer, 0, length); 
            dis.close(); 
             
   //       dis.read(buffer, 0, buffer.length); 
   //       System.out.println(dis.readUTF()); 
   //       System.out.println(new String(buffer, "UTF8")); 
             
            byte[] raw = signature.sign(); 
            theSig = raw; 
            return new sun.misc.BASE64Encoder().encode(raw); 
             
        }  
        catch (Exception e) 
            { 
                e.printStackTrace(); 
            } 
        return null; 
    } 
    /* takes the signature string and tries to verify it */ 
    public void verifyMessage(String theMessage, String theSignature) { 
        try { 
             
            Signature signature = Signature.getInstance("MD5WithRSA"); 
            signature.initVerify(ks.getCertificate("Nigel").getPublicKey()); 
         
            /* read in the message file */ 
            ByteArrayOutputStream baos = new ByteArrayOutputStream(); 
            DataOutputStream dos = new DataOutputStream(baos); 
         
            String sr = theMessage; 
            byte[] utf8 = sr.getBytes("UTF8"); 
            dos.write(utf8); 
            //dos.writeUTF("a string of sorts"); 
            byte[] arrayBytes = baos.toByteArray(); 
             
            ByteArrayInputStream bais = new ByteArrayInputStream(arrayBytes); 
            DataInputStream dis = new DataInputStream(bais); 
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            byte[] buffer = new byte[arrayBytes.length]; 
            int length; 
            while ((length = dis.read(buffer)) != -1) 
            signature.update(buffer, 0, length); 
            dis.close(); 
         
            /* Convert Signature String to Bytes and Test */ 
            byte[] signedBytes = new sun.misc.BASE64Decoder().decodeBuffer(theSignature); 
 
            if (signature.verify(signedBytes)) { 
                testResult = true; 
            } 
            else{ 
                testResult = false; 
                } 
        } 
        catch (Exception e) { 
            e.printStackTrace(); 
        } 
    } 
     
    public boolean verResult() { 
        return testResult; 
    } 
     
    public String encodeMessagePublic(String theMessage)  { 
        try { 
        remote_cert = (X509Certificate) ks.getCertificate(remote_alias); 
        PublicKey pKey = remote_cert.getPublicKey(); 
   //   CertificateFactory cf = CertificateFactory.getInstance("X.509"); 
        Cipher RSAcrypt = Cipher.getInstance("RSA", "BC"); 
        RSAcrypt.init(Cipher.ENCRYPT_MODE,pKey); 
      
        byte[] utf8 = theMessage.getBytes("UTF8"); 
        byte[] enc = RSAcrypt.doFinal(utf8); 
        return new sun.misc.BASE64Encoder().encode(enc); 
        } 
        catch (Exception e) { 
            e.printStackTrace(); 
        } 
        return null; 
    } 
     
    public String decodeMessagePrivate(String theMessage) { 
        try { 
        Cipher RSAdecrypt = Cipher.getInstance("RSA","BC");  
        RSAdecrypt.init(Cipher.DECRYPT_MODE,(PrivateKey) ks.getKey(local_alias, 

storepass.toCharArray())); 
        byte[] dec = new sun.misc.BASE64Decoder().decodeBuffer(theMessage); 
        byte[] decoded = RSAdecrypt.doFinal(dec); 
        return new String(decoded, "UTF8"); 
        } 
        catch (Exception e) { 
            e.printStackTrace(); 
        } 
        return null; 
    } 
     
    public String encodeMessagePrivate(String theMessage) { 
        try { 
        Cipher RSAencrypt = Cipher.getInstance("RSA","BC");  
        RSAencrypt.init(Cipher.ENCRYPT_MODE,(PrivateKey) ks.getKey(local_alias, 

storepass.toCharArray())); 
        byte[] utf8 = theMessage.getBytes("UTF8"); 
        byte[] enc = RSAencrypt.doFinal(utf8); 
        return new sun.misc.BASE64Encoder().encode(enc); 
        } 
        catch (Exception e) { 
            e.printStackTrace(); 
        } 
        return null; 
    } 
     
    public String decodeMessagePublic(String theMessage)  { 
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        try { 
        remote_cert = (X509Certificate) ks.getCertificate(remote_alias); 
        PublicKey pKey = remote_cert.getPublicKey(); 
        Cipher RSAdecrypt = Cipher.getInstance("RSA", "BC"); 
        RSAdecrypt.init(Cipher.DECRYPT_MODE, pKey); 
        byte[] dec = new sun.misc.BASE64Decoder().decodeBuffer(theMessage); 
        byte[] decoded = RSAdecrypt.doFinal(dec); 
        return new String(decoded, "UTF8"); 
        } 
        catch (Exception e) { 
            e.printStackTrace(); 
        } 
        return null; 
    } 
     
    public String exportLocalCert() { 
        try { 
        local_cert = (X509Certificate) ks.getCertificate(local_alias); 
         
        byte[] certBytes = local_cert.getEncoded(); 
        return new sun.misc.BASE64Encoder().encode(certBytes); 
        } 
        catch (Exception e) { 
            e.printStackTrace(); 
        } 
        return null; 
   } 
    public void importCert(X509Certificate theCert, String theAlias) { 
        try { 
             
            byte[] buf = theCert.getEncoded();     
            FileOutputStream os = new FileOutputStream(theAlias+".cer"); 
            os.write(buf); 
            os.close(); 
        } 
        catch (Exception e) { 
            e.printStackTrace(); 
        } 
    } 
     
} 

 
 
 


