
Netsniff - Design and Implementation Concepts

Urs Keller1, Jason But
Centre for Advanced Interent Architectures. Technical Report 050204A

Swinburne University of Technology
Melbourne, Australia

urs.keller@epfl.ch, jbut@swin.edu.au

Abstract– This technical report gives an overview of the pro-
tocols netsniff currently understands. Also it describes the data
netsniff extracts from the parsed protocols. It further gives an
overview about the anonymisation schemes currently implemented
and about their issues.

Keywords– Netsniff, packet decoding, protocol decoding,
anonymisation, Statistics

I. I NTRODUCTION

Netsniff is a tool designed to capture network traffic. It
is designed to parse the captured traffic at the application
layer and to gather statistics about different networked ap-
plications that are running across the listening point on
the network. Originally designed for the ICE3 project [1],
netsniff preforms the task of extracting data at various pro-
tocol layers and assigning them to individual application
data flows, as well as traffic anonymisation to allow for
data publication while preserving individual users privacy.

This technical report documents the characteristics of
netsniff and describes the data gathering process in more
detail - including the formatting of the output data and
why it is captured.

II. BASIC NETSNIFFDESIGN

Netsniff is based on a C++ Object Oriented design. Its im-
plementation allows simple expansion to support decoding
of new protocols with minimal effort. As an example, if
we wish to support decoding of imaginary protocol XYZ
which runs over TCP, a module to parse the Application
Layer protocol can be designed. TCP layer information is
automatically collected and output for each TCP stream,
following which the particular Application Layer data is
appended. A basic Object Layout is shown in Figure1.

The details of what protocols are decoded follow in
a later section, brief examples for decoding DNS and
HTML application data follow:

A. DNS Decoding
All capturing is done using the pcap library to retrieve the
entire captured payload. Assuming the DNS packet is cap-
tured on an Ethernet link, then:

• The entire data packet is captured and tested to see if
it is an Ethernet packet. If so, the header is stripped

1Urs Keller worked on Netsniff while visiting CAIA from the Swiss
Federal Institute in LausanneEPFL.

 : PCAPDev

 : PPoESessionPacket : EtherPacket : NullPacket

 : PPPPacket

 : IPPacket
 : ICMPPacket

 : UDPPacket

 : DNSPacket

 : TCPPacket

 : TCPStreammanager

 : TCPStream

Figure 1: Object layout

and the Ethernet Packet passed to the EthernetPacket
constructor.

• The EthernetPacket constructor finds an encapsulated
IP Packet. An IPPacket is constructed with the Eth-
ernet Payload.

• The IPPacket constructor finds an encapsulated UDP
Packet. A UDPPacket is constructed with the IP Pay-
load.

• The UDPPacket constructor determines that the ap-
plication is DNS. A DNSPacket is constructed with
the UDP Payload. Note that RFC1035 [2] states that
DNS can use a TCP connection, if the payload ex-
ceeds 512 bytes. This isn’t currently implemented by
Netsniff, but might be added in future releases, de-
pending on the traffic, we will observe.

• The DNSPacket constructor parses the DNS informa-
tion.

• The packet details are logged, the base layer logs
the packet timestamp, the IPPacket logs the source
and destination IP addresses, the UDPPacket logs
the source and destination Port Numbers, and the
DNSPacket logs the DNS information gathered.

CAIA Technical Report 050204A February 2005 page 1 of10

mailto:urs.keller@epfl.ch
mailto:jbut@swin.edu.au

B. HTTP Decoding

Again, all capturing is done by the pcap library, in this
case:

• The entire data packet is captured and tested to see if
it is an Ethernet packet. If so, the header is stripped
and the Ethernet Packet passed to the EthernetPacket
constructor.

• The EthernetPacket constructor finds an encapsulated
IP Packet. An IPPacket is constructed with the Eth-
ernet Payload

• The IPPacket constructor finds an encapsulated TCP
Packet. A TCPPacket is constructed with the IP Pay-
load

• The TCPPacket constructor determines which stream
the packet belongs to (based on Source-Destination
IP Address/Port Number pairs) and passes the TCP-
Packet to the TCPStream instance collating statistics
about the given stream. If no TCPStream instance
exists, one is created.

• The TCPStream instance logs information regarding
Round Trip Time (RTT), Jitter, Packet Loss Rate
(PLR), and transferred bytes as well as reconstruct-
ing the actual TCP data stream. The TCPStream in-
stance also determines the application type as HTTP
and creates a HTTPParser to parse the reconstructed
data stream.

• The HTTPParser collects statistics from the decoded
HTTP data exchange.

• When the TCP Stream is concluded, the TCPStream
instance initiates logging of information:

1. The TCPStream instance logs the stored TCP
Stream information and calls the Parser to log
application layer information.

2. The HTTPParser logs HTTP level information.

III. A NONYMISATION

Netsniff supports data anonymisation with the -a com-
mand line parameter. This causes:

• IP Addresses to be anonymised in the way tcpdpriv
does with the -A50 switch. A more detailed explana-
tion can be found in Appendix A

• User strings extracted from application level proto-
cols are anonymised using a secure hash. A more
detailed explanation can be found in Appendix B

Both the above approaches allow for correlation of data. A
given IP address will always be anonymised to the same
random IP address - this allows determination of server
popularity and regularity of visits by a single user, it also
allows correlation of DNS queries to later access of the
queried host. Further, user strings will be anonymised
consistently, we can correlate information like ”How of-
ten an email is sent to a given (unknown) email address”

IV. DATA COLLECTION

In accordance with the netsniff design architecture, logged
information is layered, with each decoded protocol in the
Protocol stack having the opportunity to contribute to the
logged information. Of particular interest:

• All packets containing an unrecognised protocol will
be logged in tcpdump format. Packet data is short-
ened to the tcpdump default length of 68 bytes. If
anonymisation is enabled, the tcpdump file will have
the IP addresses anonymised.

• All TCP information will not log packet-by-packet
information, instead collating this information per
stream.

• TCP Streams of an unrecognised protocol are logged
in tcpstream.log as well as the tcpdump log file.

The following sections describe the output of netsniff for
the currently supported protocols. A complete grammar
of the output is specified in Appendix C.

A. Packet
• Timestamp: time the packet was captured, example:

’2004-10-23 03:10:00.732685’. The time stamp is
created by the PCAP library [3] and is passed on to
netsniff in the pcappkthdr struct.

• Header length: Summed length of the packet header
of each nested protocol. For a DNS packet this would
be the sum of Ethernet header, IP header, and the
UDP header length.

• Payload length: Is the total header length subtracted
from the total packet length. For a DNS packet this
is the UDP payload.

B. Ethernet Packet
• Outputs no information

• Parses payload of IPPacket and ARPPacket.

C. ARP
Note that some data collected here is redundant, since
we will only support ARP with IP/Ethernet. The infor-
mation is more or less what is found in an ARP packet
itself. Source/Destination hardware/protocol address are
anonymised, when anonymisation is turned on.

• −→ Packet: All information defined by PacketA

• Hardware address type: The type of hardware ad-
dress ARP is doing address resolution for. We only
currently support ARPHRDETHER.

• Protocol address type:The type of protocol address
ARP is used with. Currently there is only support for
ETHERTYPEIP.

• Hardware address length: The length of the hard-
ware address, which is 6 bytes for Ethernet.

• Protocol address length:Length of the protocol ad-
dress. This will be 4 in our case.

CAIA Technical Report 050204A February 2005 page 2 of10

• Operation: What the packet operation is. One of
REQUEST, REPLY, REVREQUEST, REVREPLY,
INVREQUEST, INVREPLY.

• Source hardware address:

• Source protocol address:

• Destination hardware address:

• Destination protocol address: The address con-
tained in an ARP packet. IP addresses are
anonymised with IP anonymisation and hardware ad-
dresses with string anonymisation described in Ap-
pendix A respectively B.

D. IPPacket

• −→ Packet: All information defined inA

• IP addresses: Source and destination IP addresses
are captured and logged.

E. UDPPacket

• −→ IPPacket: All information defined inD

• Ports: Source and destination ports are captured and
logged.

• Note that UDPPackets are currently only logged in
the context of a DNSPacket. All other UDPPackets
are logged to the notparsed.dump file.

F. DNSPacket

• −→ UDPPacket: All information defined inE

• identification: 16 bit identification as specified in
RFC1035 [2]. It allows us to match queries and their
corresponding responses.

• response code:RCODE as defined in section 4.1.1
of RFC1035 [2]. This usually indicates if there was
an error.

• queries: the queries contained in the DNS packet.
The host name looked up is replaced by a string of
’x’ to anonymise it.

• responses: Contains the responses defined in this
packet. They are matched up with the queries by
means of the identification field collected (described
above). The returned (possibly anonymised) IP ad-
dresses can later be matched up with protocol ex-
changes to these servers using other protocols.

G. ICMP

• −→ IPPacket: All information defined inD

• Hops: number of hops this packet passed through.

• ICMP type: provides a first information what kind
the ICMP packet is.

• ICMP code: provides further information on the
kind of the ICMP packet

• Note: we don’t parse the packets further based on
their type, for now.

H. TCPStream

• Timestamp: time the first packet of the stream was
captured. It is created when the SYN packet is cap-
tured.

• Duration: The duration of the TCP stream. This in-
formation is only accurate to a certain degree, since
streams are timed out by netsniff, if there is no activ-
ity.

• source IP: Source address of the TCP stream. This
is the address from which the TCP stream was estab-
lished.

• source port: Source port from which the connection
was established.

• destination IP: IP address to which the connection
was made.

• destination port: Port to which the connection was
established.

• Client2server data:

• Server2client data: Amount of TCP payload sent
from one party to other.

• Client2server overhead:

• Server2client overhead: Overhead produced by
TCP for each direction.

• Hop count: Contains the averaged hop count estima-
tion over the duration of the TCP stream. Hop count
estimation works on the assumption that Operating
Systems set the TTL field of packets to values 64,
128 or 255. It further assumes that hosts are at most
64 hops away from the system netsniff runs on. This
field contains the sum of the hops to the source and
to the destination of the connection.

• RTT: RTT is estimated separately for each portion of
the TCP stream - RTT from the client to the measure-
ment device and from the server to the measurement
device. The algorithm employed is that devised by
But et. al [4]. This algorithm produces a running
estimate for the stream RTT, we report the average
value of this running estimate.

• Jitter: Jitter is estimated based on the RTT samples
using the algorithm devised by But et. al [4]. This
estimate Jitter as the running absolute difference be-
tween witnessed RTT and the current running RTT
estimate. This also produces a running estimate for
the stream Jitter, we report the the average value.

• Loss rate: Netsniff performs a loss rate measure-
ment for both directions, client to server and server
to client. Loss rate estimation uses the Benko-Veres
algorithm [5]. The running estimate proposed by
Favi/Armitage[6] is not yet implemented. Also keep
in mind, that the loss rate estimation using this al-
gorithm [5] becomes only reliable after a certain
amount of traffic has been seen and this for a given
loss rate, as has been demonstrated in [6].

• Hop Count Histograms: A histogram of all wit-

CAIA Technical Report 050204A February 2005 page 3 of10

nessed hop counts is available. This allows us to see
variations in network conditions due to a change in
witnessed hop counts over the link.

• RTT Running Estimates:

• Jitter Running Estimates: The running RTT and
Jitter estimates calculated for the duration of the TCP
stream are sub-sampled at ten second intervals. This
list of running estimates is presented as a means of
generating time-based statistics for the stream.

I. HTTP
• −→ TCPStream: All information described in TCP-

StreamH.

• Request type:The type of request the client made to
the server, like GET, POST, Connection etc.

• Request URL: If the data is not anonymised this will
contain the requested URL.

• Request host: The host name the request went to.
Only set when netsniff isn’t in anonymised mode.

• Request referer: The URI of the document from
which the Request URL was obtained. As above this
value is only available if not in anonymised mode and
it was supplied by the HTTP client.

• Upload length: For POST requests the number of
bytes uploaded to the server. Note that the Query
part of a HTTP request is currently not included in
the Upload length.

• Download length: For all except POST and CON-
NECT requests this indicates the number of bytes
transferred from the server to the client.

• Status code:Corresponds to the HTTP status codes
returned by the server.

• Cacheability: Indicates the cacheability of the doc-
ument that is served by the server. This follows the
rules for cacheability in RFC2616 section 13.4.

• Content type: Is the content type the server returns
to the client such as ’text/html’.

J. SMTP
• −→ TCPStream: All information described in TCP-

StreamH.

• Sender: All sender addresses used in this particular
connection. Most traffic will contain a single sender
in its SMTP connections, because we will observe in
a home environment, where SMTP server to SMTP
server traffic is not common. If anonymisation is
turned on, this will be a secure hash of the sender
address. This allows us to evaluate data on a per user
basis.

• advertised size: ESMTP defines a size attribute
listed in the EHLO command. This attribute adver-
tises the maximal size the SMTP server is willing to
send. This might be a good long term measure of the
user demand of sending large amounts of data over e-
mail. We will see on how this evolves over let’s say

6 month to a year. Just to give an idea here:

– gsmtp[171,185].google.com announce 20Mb

– mx[1-4].mail.yahoo.com announce 30Mb

– mx[1-4].hotmail.com announce 30Mb

• (unrecognized) / commands:Keeps track of how
many commands the SMTP client sent to the SMTP
server. This is mostly there because we want to see,
if we need to add further currently unsupported com-
mands.

• sent mail sizes:A list of sizes of e-mails sent. More
than one e-mail can be sent over an SMTP connec-
tion. But as we have seen for the sender, this will
most likely only contain a single entry since many
mail clients only send one e-mail at a time (except
for dial up users, who might still use the ’send later’
feature many mail clients have).

K. POP3
• −→ TCPStream: All information described in TCP-

StreamH.

• User: User name used to login to the POP3 server.
When anonymisation is turned on, this will be an
MD4 hash of the user name. This data is collected
to do statistics on a user behavior, which will allow
us to correlate captured data to user behavior.

• mails deleted:The number of mails the user deleted
from the server. We don’t know yet if this will be use-
ful, since many users don’t keep mails on the server
when using POP3, so the POP3 client will just delete
all mail on the server after download. Basically this
would then only help to tell if the user keeps the mails
on the server or not.

• Errors: Number of errors encountered during the
session. This is the number of times the server re-
sponded with ERR.

• protocol errors: Some implementations of POP3
have some flaws. This is the number of times net-
sniff encounters behavior, which isn’t conform to the
RFC.

• mails received:A list of the sizes of mails the client
downloaded from the server.

• mails inbox: A list of mail sizes, which are on the
server. This will only contain values, if the client
issued a LIST command.

L. IMAP
• −→ TCPStream: All information described in TCP-

StreamH.

• User: User name the user logged in with or its
anonymisation. This is set to “<UNKNOWN>”
if the authentification method is not username/pass-
word based.

• Authentification method: The method used to au-
thenticate the user. This is currently password or
CRAM-MD5.

CAIA Technical Report 050204A February 2005 page 4 of10

• Mails listed: The sizes of the mails the user down-
loaded partially. This is usually a listing the user re-
quests from the server. This gives a distribution of
the e-mail sizes the user keeps in her inbox.

• Mails downloaded: The sizes of the mails the user
downloaded completly (for IMAP this usually means
looked at). This gives the distribution of mails beeing
downloaded as opposed to mails in the inbox.

M. TLS
• −→ TCPStream: All information described in TCP-

Stream.

• Session ID:The session identification is created by
the TLS server side and sent to the client. Together
with the shared secret, it can be used by a client to
resume a TLS session or to use additional streams.
Session ID is collected, since it uniquely defines the
TLS session in a certain time frame.

• HadError: This flag is set, when the session wasn’t
captured completely.

• Version: The TLS version number. For TLS this is
0x301, since TLS is the successor of SSL 3.0. Cur-
rently this is the only fully implemented TLS/SSL
version in netsniff. Most browser nowadays use TLS
as their encryption mechanism. Future analysis will
show, if the implementation of older SSL versions
will be necessary.

• Cipher: This is the cipher method used.

• Compression: The compression method used. This
is usually 0x0 for not compressed content.

• Payload length: The number of bytes transported
through the TLS session

• Overhead: Overhead produced by using TLS.

• TCP streams: The number of TCP streams, associ-
ated with the TLS session.

• Session duration:Session duration is the amount of
time elapsed from the creation of the session until
the end of the last TCP stream belonging to the TLS
session.

• TCP timestamps: A list of time stamps, which
uniquely identify the TCP streams associated with
the TLS session.

N. FTP
• −→ TCPStream: All information described in TCP-

StreamH.

• (Anonymised) user name:The user name used to
login to the FTP server. If anonymisation is turned on
this will be a hashed value of the user name except for
names commonly used for anonymous FTP, which
are anonymous, guest and ftp.

• OS string: String representing the operation system
used on the FTP server.

• File operations: Counts the number of successful
file operations on the FTP server. Examples are:

Size, Stat, Checksum

• Error file operations: Number of file operations,
that produced an error, missing file etc.

• Unimplemented: The number of unimplemented
commands occurred during the FTP connections.
This might be helpful when deciding, if additional
commands should be added.

• Responses:Number of times the server replied with
an error status.

• Unknown commands:The number of unknown (by
netsniff) commands sent to the server.

• Anonymous: Set if the login was an anonymous lo-
gin. This is useful, to easily select anonymous FTP
connections.

• Login: If the FTP connection had a successful login.
Meaning that a user logged in with a user name and
optional password and got a positive reply from the
server.

• List of data connection: A list of connections
opened from the server to the client (active) respec-
tively from the client to the server (passive) and the
operation the connection was used for. Currently this
is one of LIST, RETR, SEND.

REFERENCES
[1] Centre for Advanced Internet Architecture. ”ICE3 Inverted Capacity

Extended Engineering Experiment”, January 2005.http://caia.
swin.edu.au/ice/ .

[2] P.V. Mockapetris. ”Domain names - implementation and specification”.
RFC 1035, IETF, November 1987.http://www.ietf.org/rfc/
rfc1035.txt .

[3] ”TCPDUMP / PCAP”, January 2005.http://www.tcpdump.org .

[4] J. But, U. Keller, D. Kennedy, and G. Armitage. ”Passive TCP Stream
Estimation of RTT and Jitter Parameters”.Submitted to ACM Computer
Communications Review, January 2005.http://caia.swin.edu.
au/cv/jbut/publications.html .

[5] P. Benko and A. Veres. ”A Passive Method for Estimating End-
to-End TCP Packet Loss”. Proceedings of IEEE Globecom, 2002,
November 2002.http://www.comet.columbia.edu/˜veres/
globecom02.pdf .

[6] C. Favi and G. Armitage. ”Dynamic Performance limits of the
Benko-Veres Passive TCP Packet Loss Estimation Algorithm”.Aus-
tralian Telecommunications Networks & Applications Conference 2004
(ATNAC2004), December 2004.

[7] Greg Minshall. ”TCPDPRIV”, August 1997.http://ita.ee.lbl.
gov/html/contrib/tcpdpriv.html .

[8] Jun Xu, Jinliang Fan, Mostafa H. Ammar, and Sue B. Moon. ”Prefix-
Preserving IP Address Anonymization: Measurement-based Security
Evaluation and a New Cryptography-based Scheme”. InProc. of IEEE
ICNP 2002, November 2002.http://www.cc.gatech.edu/˜jx/
reprints/ICNP02A.ps .

[9] Greg Minshall. ”Thoughts on How to Mount an Attack on tcpdpriv’s
“-A50” Option”, July 2001. http://ita.ee.lbl.gov/html/
contrib/tcpdpriv.html .

V. A PPENDIX
A. IP anonymisation
IP anonymisation works in the fashion tcpdpriv does
[7]. A thorough analysis of prefix-preserving IP address
anonymisation is presented in [8]. The tcpdpriv approach
is table based. It keeps a lookup table in memory, which

CAIA Technical Report 050204A February 2005 page 5 of10

http://caia.swin.edu.au/ice/
http://caia.swin.edu.au/ice/
http://www.ietf.org/rfc/rfc1035.txt
http://www.ietf.org/rfc/rfc1035.txt
http://www.tcpdump.org
http://caia.swin.edu.au/cv/jbut/publications.html
http://caia.swin.edu.au/cv/jbut/publications.html
http://www.comet.columbia.edu/~veres/globecom02.pdf
http://www.comet.columbia.edu/~veres/globecom02.pdf
http://ita.ee.lbl.gov/html/contrib/tcpdpriv.html
http://ita.ee.lbl.gov/html/contrib/tcpdpriv.html
http://www.cc.gatech.edu/~jx/reprints/ICNP02A.ps
http://www.cc.gatech.edu/~jx/reprints/ICNP02A.ps
http://ita.ee.lbl.gov/html/contrib/tcpdpriv.html
http://ita.ee.lbl.gov/html/contrib/tcpdpriv.html

it builds up gradually, when IP addresses are anonymised.
[8] defines this nicely in the following way:

Let’s suppose that we have a set of<
raw, anonymised > binding pairs of IP addresses.
For an IP address a, we’d like to anonymise with
a = a1a2...an we find the pair < x, y > with
x = x1x2...xn and y = y1y2...yn with longest prefix
matchk on a andx. Then if a is anonymised tob (b =
b1b2...bn) we haveb1b2...bkbk+1 = y1y2...yk¬(yk+1) and
bk+2bk+3...bn = rand(0, 2n−k−1 − 1), whererand(g, f)
generates a random number betweeng andf . In netsniff
rand(g, f) is an alternating series of 0 and 1. Finally if
a! = x (not in the list already),< a, b > will be added to
the binding table.

As described in [8] this has some problems, since the
anonymisation depends on the traffic sniffed respectively
the trace file. Which means, it is inconsistent over multiple
netsniff sessions. For instance when netsniff should crash
for some reason or is restarted for maintenance, it would
loose the lookup table held in memory.

Also there might be a problem that the structure to
lookup the anonymised IPs grows to a significant size.
From our current data in netsniff we have roughly 5200
distinct IP addresses over about ten weeks. Which is only
a small fraction of the possible IP space. Figure2 shows
how the number of distinct IP addresses developed over
time for the last 10 weeks for DNS and TCP traffic only. It
is natural that the number of distinct IP addresses increases
over time, but we don’t know how rapidly this increases.

Figure 2: Number of distinct IPs over time

In terms of security [8] proves that the anonymiza-
tion used in netsniff is as robust as is possible for prefix-
preserving IP address anonymisation. It is easy to see,
that if no prefix-preserving anonymisation is necessary,
anonymisation can be made more robust. Since the guess

of a mapping of a popular IP address doesn’t necessarily
allow to infer other mappings. An interesting article on
this topic is described in [9].

B. String anonymisation
We use an anonymisation of strings in ARP, POP3, SMTP,
FTP and DNS output of netsniff. DNS host names are
anonymised to a string of ’x’s with the same length, pre-
serving the dots. In the other protocols a secure hash func-
tion is used, which is part of the OpenSSL package. The
complete masking of the string as in the DNS part of net-
sniff is very secure and almost no deduction to the original
host name can be made. But there is no way to correlate
host names occurring in other protocols to the host name
part of the DNS query.

CAIA Technical Report 050204A February 2005 page 6 of10

C. Output Grammar

−−
h t t p o u t p u t : : = t c p o u t p u t

∗ (h t t p r e q u e s t)
∗ (h t t p i n c o m p l e t e r e q u e s t) CRLF

h t t p i n c o m p l e t e r e q u e s t : : = ” INCOMPLETE” SP h t t pr e q u e s t
h t t p r e q u e s t : : = (h t t pc o n n e c t r e q u e s t | h t t p o t h e r r e q u e s t

| h t t p p o s t r e q u e s t) CRLF
h t t p c o n n e c t r e q u e s t : : = ”CONNECT” SP

[h t t p p r i v a t e i n f o]
h t t p r e t u r n c o d e

h t t p p o s t r e q u e s t : : = ” POST ” SP
[h t t p p r i v a t e i n f o]
h t t p p o s t u p l o a d l e n g t h SP
h t t p c o n t e n t t y p e SP
h t t p r e t u r n c o d e SP
h t t p d o w n l o a d l e n g t h SP
[[” NOT ”] ” c a c h e a b l e ”]

h t t p o t h e r r e q u e s t : : = h t t p r e q u e s t t y p e SP
[h t t p p r i v a t e i n f o]
h t t p c o n t e n t t y p e SP
h t t p r e t u r n c o d e SP
h t t p d o w n l o a d l e n g t h SP
[[” NOT ”] ” c a c h e a b l e ”]

h t t p p r i v a t e i n f o : : = h t t p r e q u e s t u r l SP
h t t p r e q u e s t h o s t SP
h t t p r e q u e s t r e f e r e r SP

h t t p r e q u e s t t y p e : : = ” GET ” | ” HEAD ” | ” PUT ” | ” DELETE”
| ” TRACE ” | ” CONNECT ” | ” ? ”

h t t p r e q u e s t u r l : : = h t t p u r l
h t t p r e q u e s t h o s t : : = hostname
h t t p r e q u e s t r e f e r e r : : = h t t p u r l
−−
m a i l s t a t : : = ” [” ∗ (number SP) ”] ” CRLF
mai l num : : = number
mai l mean : : = dec ima l
ma i l med ian : : = dec ima l
m a i l s t d d e v : : = dec ima l
−−
imap4 ou tpu t : : = t c p o u t p u t

i m a p 4 l o g l i n e 1
i m a p 4 l o g l i n e 2
i m a p 4 l o g l i n e 3

i m a p 4 l o g l i n e 1 : : = (imap4 anonymizeduser | imap4 use r) SP
i m a p 4 a u t h e n t i c a t i o nm e t h o d SP
i m a p 4 n u m m a i l s l i s t e d SP
i m a p 4 n u m m a i l s r e c e i v e d SP
i m a p 4 c o m p l e t l y p a r s e d SP

i m a p 4 l o g l i n e 2 : : = i m a p 4 m a i l s l i s t e d
i m a p 4 l o g l i n e 2 : : = i m a p 4 m a i l s r e c e i v e d

imap4 anonymizeduser : : = s t r i n g
imap4 use r : : = s t r i n g
i m a p 4 m a i l s r e c e i v e d : : = m a i l s t a t
i m a p 4 m a i l s l i s t e d : : = m a i l s t a t
i m a p 4 m a i l s d e l e t e d : : = number
i m a p 4 e r r o r s : : = number
i m a p 4 n u m p r o t o c o l e r r o r s : : = number
−−
f t p o u t p u t : : = t c p o u t p u t

f t p l o g l i n e 1
f t p l o g l i n e 2

f t p l o g l i n e 1 : : = (f t p u s e r n a m e| f t p a n o n y m i z e d u s e r) SP
DQUOTE f t p o s s t r i n g DQUOTE SP
f t p n u m f i l e o p e r a t i o n s SP
f t p n u m e r r o r f i l e o p e r a t i o n s SP

CAIA Technical Report 050204A February 2005 page 7 of10

f t p num un imp lemented SP
f t p n u m e r r o r r e s p o n s e s SP
ftp num unknown commands SP
f tp anonymous SP
f t p l o g i n CRLF

f t p l o g l i n e 2 : : = (” LIST ” | ”RETR” | ”SEND ”) SP
f t p d a t a s t r e a m p o r t CRLF

f t p o s s t r i n g : : = STRING
f t p d a t a s t r e a m p o r t : : = NUMBER
f t p n u m f i l e o p e r a t i o n s : : = NUMBER
f t p n u m e r r o r f i l e o p s : : = NUMBER
f tp num un imp lemented : : = NUMBER
f t p n u m e r r o r r e s p o n s e s : : = NUMBER
ftp num unknown commands : : = NUMBER
DQUOTE : : = ’ ” ’
−−
p o p 3 o u t p u t : : = t c p o u t p u t p o p 3 l o g l i n e 1

p o p 3 l o g l i n e 2
p o p 3 l o g l i n e 3

p o p 3 l o g l i n e 1 : : = (pop3 anonymizeduser | pop3 use r) SP
p o p 3 m a i l s d e l e t e d SP
p o p 3 e r r o r s SP
p o p 3 n u m p r o t o c o l e r r o r s CRLF

p o p 3 l o g l i n e 2 : : = p o p 3 m a i l s r e c e i v e d
p o p 3 l o g l i n e 3 : : = p o p 3 m a i l s i n b o x
pop3 anonymizeduser : : = s t r i n g
pop3 use r : : = s t r i n g
p o p 3 m a i l s r e c e i v e d : : = m a i l s t a t
p o p 3 m a i l s i n b o x : : = m a i l s t a t
p o p 3 m a i l s d e l e t e d : : = number
p o p 3 e r r o r s : : = number
p o p 3 n u m p r o t o c o l e r r o r s : : = number
−−
t l s s t r e a m o u t p u t : : = t c p o u t p u t
t l s s e s s i o n o u t p u t : : = t l s s e s s i o no u t p u t l i n e 1

t l s s e s s i o n o u t p u t l i n e s
t l s s e s s i o n o u t p u t l i n e 1 : : = t l s s e s s i o n i d SP

t l s h a d E r r o r SP
t l s v e r s i o n SP
t l s c i p h e r SP
t l s c o m p r e s s i o n SP
t l s p a y l o a d l e n g t h SP
t l s o v e r h e a d SP
t l s n u m t c p s t r e a m s SP
t l s s e s s i o n d u r a t i o n CRLF

t l s s e s s i o n o u t p u t l i n e s : : = 1∗ (t c p t i m e s t a m p)
t l s s e s s i o n i d : : = h e x s t r i n g
h e x s t r i n g : : = ” 0 x ” 1∗ ([0123456789 abcde f])
t l s h a d E r r o r : : = boo l
t l s v e r s i o n : : =
t l s c i p h e r : : =
t l s c o m p r e s s i o n : : =
t l s p a y l o a d l e n g t h : : = number
t l s o v e r h e a d : : = number
t l s n u m t c p s t r e a m s : : = number
boo l : : = ” 0 ” | ” 1 ”
−−
t c p h i s t o g r a m : : = number∗ (” , ” number) CRLF
−−
t c p o u t p u t : : = t c p o u t p u t l i n e 1

t c p o u t p u t l i n e 2
t c p o u t p u t l i n e 3
t c p o u t p u t l i n e 4
t c p o u t p u t l i n e 5

t c p o u t p u t l i n e 1 : : = t c p t i m e s t a m p SP
t c p d u r a t i o n SP

CAIA Technical Report 050204A February 2005 page 8 of10

t r n s p o r t i p o u t p u t SP
t c p c l i e n t 2 s e r v e r d a t a SP
t c p c l i e n t 2 s e r v e r o v e r h e a d SP
t c p s e r v e r 2 c l i e n t d a t a SP
t c p s e r v e r 2 c l i e n t o v e r h e a d SP
t c p p a t h h o p c o u n t SP
t c p r t t SP
t c p j i t t e r SP
t c p c l i e n t 2 s e r v e r e r r o r r a t e SP
t c p s e r v e r 2 c l i e n t e r r o r r a t e CRLF

t c p o u t p u t l i n e 2 : : = ” Hops C l i e n t : , ” t c p h i s t o g r a m CRLF
t c p o u t p u t l i n e 3 : : = ” Hops S e r v e r : , ” t c p h i s t o g r a m CRLF
t c p o u t p u t l i n e 4 : : = ” RTT : , ” t c p h i s t o g r a m CRLF
t c p o u t p u t l i n e 5 : : = ” J i t t e r : , ” t c p h i s t o g r a m CRLF
t c p r t t : : = number
t c p j i t t e r : : = number
tcp hop num : : = dec ima l
t c p t i m e s t a m p : : = t imes tamp
t c p d u r a t i o n : : = dec ima l
t c p c l i e n t 2 s e r v e r d a t a : : = number
t c p c l i e n t 2 s e r v e r o v e r h e a d : : = number
t c p s e r v e r 2 c l i e n t d a t a : : = number
t c p s e r v e r 2 c l i e n t o v e r h e a d : : = number
t c p p a t h h o p c o u n t : : = number
t c p r t t : : = number
t c p j i t t e r : : = number
t c p c l i e n t 2 s e r v e r e r r o r r a t e : : = dec ima l
t c p s e r v e r 2 c l i e n t e r r o r r a t e : : = dec ima l
−−
s m t p o u t p u t : : = t c p o u t p u t s m t p l o g l i n e 1 s m t p l o g l i n e 2
s m t p l o g l i n e 1 : : = s m t p s e n d e r SP

s m t p a d v e r t i s e d s i z e SP
smtp num commands SP
smtp num unrecognizedcommands CRLF

s m t p l o g l i n e 2 : : = m a i l s t a t
s m t p s e n d e r : : = ” [”

∗ (sm tp f r om pa th | smtp anonymizedpa th)
”] ”

a d v e r t i s e s s i z e : : = number
smtp f rom pa th : : = smtp pa th
smtp anonymizedpa th : : = s t r i n g
smtp pa th : : =
smtp num commands : : = number
smtp num unrecognizedcommands : : = number
−−
i c m p o u t p u t : : = p a c k e to u t p u t SP

i p o u t p u t SP
i c m p l o g l i n e CRLF

i c m p l o g l i n e : : = ” [” icmp code | i cmp type ”] ”
−−
d n s l o g l i n e : : = p a c k e t o u t p u t SP

u d p p a c k e t o u t p u t SP
d n s o u t p u t

d n s o u t p u t : : = (” Response ”| ” Query ”)
” (” d n s i d e n t i f i c a t i o n ”) ” SP
d n s r e s u l t c o d e
∗ (dns que ry)
∗ (d n s r e s p o n s e) CRLF

dns que ry : : = SP
”Q (” (i p | hostname) SP
” −” SP
(”A ” | ” PTR ” | d n s t y p e) ” / ”
(” IN ” | ” IN6 ” | d n s c l a s s) ”) ”

d n s r e s p o n s e : : = SP
”R (” (d n s r e s p o n s ea
| d n s r e s p o n s ep t r | d n s r e s p o n s eo t h e r) SP

CAIA Technical Report 050204A February 2005 page 9 of10

” −” SP
”TTL ” SP
t t l SP
” seconds) ”

d n s r e s p o n s ea : : = hostname | i p
d n s r e s p o n s ep t r : : = hostname | i p
d n s r e s p o n s eo t h e r : : = hostname| i p
d n s i d e n t i f i c a t i o n : : = number
d n s t y p e : : = number
d n s c l a s s : : = number
d n s r e s u l t c o d e : : = ” NOERROR ” | ” FORMAT ERROR”

| ” SERVER FAILURE ” | ” NAME ERROR”
| ” NOT IMPLEMENTED ” | ”UNKNOWN”

−−
p a c k e t o u t p u t : : = p a c k e tt i m e s t a m p SP

” Headers ” ” (” p a c k e t h e a d e r l e n g t h ”) ” SP
” Pay load ” ” (” p a c k e t p a y l o a d l e n g t h ”) ”

p a c k e t t i m e s t a m p : : = t imes tamp
p a c k e t h e a d e r l e n g t h : : = number
p a c k e t p a y l o a d l e n g t h : : = number
−−
u d p p a c k e t o u t p u t : : = t r n s p o r t i p o u t p u t SP

i p h o p s
−−
t r n s p o r t i p o u t p u t : : = s r c i p ” : ” s r c p o r t SP

d s t i p ” : ” d s t P o r t
−−
a r p o u t p u t : : = p a c k e to u t p u t SP a r p l o g l i n e
a r p l o g l i n e : : = a r h r d SP a r p r o SP

a r h l n SP a r p l n SP
a r o p SP
a r s h a SP a rs p a SP
a r t h a SP a r t p a

−−
i p o u t p u t : : = s r c i p SP

d s t i p SP
hops

i p h o p s : : = ” Hops ” ” (” num hops ”) ”
s r c i p : : = i p
d s t i p : : = i p
s r c p o r t : : = p o r t
d s t p o r t : : = p o r t
num hops : : = number

p o r t : : =
i p : : =
hostname : : = h o s t n a m ep a r t [” . ” hostname]
h o s t n a m ep a r t : : = 1∗ (HOSTNAMECHAR)
number : : =
u r l : : =
−−

CAIA Technical Report 050204A February 2005 page 10 of10

	Introduction
	Basic Netsniff Design
	DNS Decoding
	HTTP Decoding

	Anonymisation
	Data collection
	Packet
	Ethernet Packet
	ARP
	IPPacket
	UDPPacket
	DNSPacket
	ICMP
	TCPStream
	HTTP
	SMTP
	POP3
	IMAP
	TLS
	FTP

	References
	Appendix
	IP anonymisation
	String anonymisation
	Output Grammar

