
Extending Netsniff

Urs Keller1, Jason But
Centre for Advanced Interent Architectures. Technical Report 050204B

Swinburne University of Technology
Melbourne, Australia

urs.keller@epfl.ch, jbut@swin.edu.au

Abstract– This technical report describes, how to extend net-
sniff with additional stream and packet level parser. It also de-
scribes how to extend the log file parser and database, that were
built to do statistics on the data collected by Netsniff.

Keywords– Netsniff, Extension, Stream-parser, Packet-parser

I. I NTRODUCTION

Netsniff [1] was developed as part of theICE3 project [2]
to capture and analyze network traffic, producing applica-
tion level information. It is currently deployed in a handful
of home-based DSL installations of CAIA researchers. It
will hopefully be deployed further in the near future. This
report describes how to extend Netsniff to support more
protocols and applications by adding additional software
modules to the application. It also explains how to extend
the Netsniff database used to generate statistical results on
the collected data. The directory structure for the Netsniff
project is described in more detail in AppendixB

II. STRUCTURE

Netsniff is based on an object-oriented design and imple-
mented using C++. The underlying pcap library [3] is used
to capture all network traffic which is then passed on to a
class hierarchy for parsing and logging of relevant infor-
mation. The hierarchical layout allows a packet header to
be processed for information by a single class which then
decides whether to pass the enclosed payload to another
class for processing. This structured layout allows Net-
sniff to be easily extended to support:

• Different physical and link-layer protocols

• New Transport Layer protocols

• New Application Layer Protocols.

Netsniff works slightly differently with stream based
protocols such as TCP Streams. Netsniff uses a TCP-
Stream instance to reconstruct an entire TCP Stream -
gathering TCP level statistics in the process - and pass-
ing the TCP bit-stream to an application level parser for
further processing.

As such, captured packets are processed both at the
packet level and at the stream level where appropriate.
Current implementation of packet level processing is in-
dicated in Figure1 where an arrow indicates what packet

1Urs Keller worked on Netsniff while visiting CAIA from the Swiss
Federal Institute in LausanneEPFL.

types are currently checked for within a particular packet
type. The PCAPDev class is not a packet in its own right,
but contains the function called by the pcap library [3] and
creates the first instance of the Packet class used to process
the captured data.

 : PCAPDev

 : TCPPacket

 : EtherPacket : NullPacket : PPoESessionPacket

 : PPPPacket

 : UDPPacket

 : IPPacket

 : DNSPacket

 : ICMPPacket

Figure 1: Collaboration Diagram of packet classes

For example, if an ICMP packet is captured on an Eth-
ernet device, the PCAPDev class will construct an Ether-
Packet instance which will process the Ethernet head-
ers and construct an IPPacket instance. This class pro-
cesses the IP header and constructs an ICMPPacket in-
stance which processes the remainder of the payload. This
design allows parsing of ICMP packets over a variety of
underlaying protocols as long as their parsers are com-
plete.

Current Stream level processing is shown in Figure2,
indicating which applications running over a TCP session
are currently processed and logged for information.

Any packets that are not processed as part of a sup-
ported application are automatically shortened to 68 bytes
and written to a log file in tcpdump format.

III. A DDING A PHYSICAL AND LINK -LAYER PROTOCOL

To add a different protocol at this level, we need to:

• Decide what data to collect and output.

• Subclass the Packet class to create a new class type
to handle the required protocol.

CAIA Technical Report 050204B February 2005 page 1 of8

mailto:urs.keller@epfl.ch
mailto:jbut@swin.edu.au

 : TCPStream

 : IMAP4 : TLS

 : SMTP

 : POP3

 : HTTP

 : TCPStreammanager

 : TCPPacket

 : FTP

Figure 2: Stream level protocols

• Modify code to create an instance of the new class
at the correct level (e.g. If implementing an ATM
parser, perhaps the ATMPacket class would be cre-
ated within PCAPDev, if implementing an ARP
parser, we would perhaps create the ARPPacket class
within EtherPacket.

The virtual methods within Packet that must be over-
loaded are:

A. Constructor
The constructor should call the base class constructor with
a pointer to its encapsulating packet. This allows packet
classes further down the protocol tree the ability to back-
track and request information from parent packets. If the
packet type contains an encapsulated packet that is pro-
cessed by another class, this class should be created and
assigned to pcSubPacket. If any information in the header
is to be processed, it must be done in the constructor.
Once the packet is completely processed, the memory al-
located to store the packet contents will be discarded. If
the packet and/or header contents are required for other
purposes they should either be copied or extracted in the
class header.

The PCAPDev class maintains the global netsniff
anonymisation flag, which can (and should) be passed
to the Packet (and inherited) class constructors. The
anonymisation flag can tell your constructor whether it
should anonymise any potentially sensitive information.
Your constructor should also pass the anonymise flag to
any lower level packet parsers. Anonymisation services
provided by netsniff are outlined in SectionVIII .

B. Destructor
Free any resources allocated in the constructor.

C. ParseStream
If this packet forms part of a stream and is the lowest level
of information before the stream is identified, then this
method should be overloaded to support the processing of
that stream. At the moment, this method is only imple-
mented in the TCPPacket class to construct and maintain
TCP Streams. Please see the existing TCPPacket imple-

mentation for an example on how to process other stream
based protocols.

D. Output
If any information retrieved at this layer should be logged,
this is where the work is done. Generally the packet
header will be parsed in the constructor and relevant in-
formation stored in member variables. This method is au-
tomatically called with an output stream to output any in-
formation about this level of the protocol tree. Any im-
plementation should also call the Output() method on any
further encapsulated packets so that all processed informa-
tion about the packet is output. If your packet parser will
not log any information, the default implementation will
automatically call the sub-packet Output() method.

IV. A DDING A PACKET-BASED APPLICATION LAYER
PROTOCOL

Applications that fall into this category perform all their
communications at the Packet level rather than a Stream
level. Examples include DNS, NFS and ARP. The same
steps apply as creating a mid-layered parser, we need to
subclass the Packet class, however there are a few other
tasks to perform.

A. Constructor
Set the bParsed member variable to true. This will ensure
that information is logged to a log file rather that the tcp-
dump format file. Do not set pcSubPacket to any value,
leave it with its default NULL value.

B. DumpFileName
Overload this method to return the file name to dump
packet information to. This should only return a file name,
the application code will automatically prepend the cor-
rect directory location to this filename. The default imple-
mentation returns ”/dev/null” to direct logged traffic to.

V. EXAMPLE OF PACKET-BASED APPLICATION LAYER
PROTOCOL

We try to explain the process described in the previous
section by giving an example. We will discuss the imple-
mentation of the ARPPacket class by outlining the follow-
ing steps:

• Decide what data to collect

• Subclass the Packet class

• Create an instance of the created Packet class from
another packet or from PCAPDev itself.

A. Output definition
The data you want to collect can be conveniently specified
by an output grammar. We will see later, that having a
BNF grammar, is handy when building a parser for the log
files produced by Netsniff. The grammar for ARPPacket
is shown in Listing1 and how the output eventually looks
like in Listing 1.

Once we have decided on what data to include in the
output file, we can start writing the code.

CAIA Technical Report 050204B February 2005 page 2 of8

a r p o u t p u t : = p a c k e to u t p u t SP a r p l o g l i n e
a r p l o g l i n e : = a r h r d SP a r p r o SP

a r h l n SP a r p l n SP
a r o p SP
a r s h a SP a rs p a SP
a r t h a SP a r t p a

Listing 1: Grammar for ARP logline

B. Extend Packet
The Packet class defines the interface shown in Listing2.
What follows is a more detailed method description.

c l a s s ARPPacket : pub l i c Packe t
{

pub l i c :
ARPPacket (uc h a r ∗ pcPacket ,

Packe t ∗ pcParen t ,
bool bAnonymise) ;

v i r t u a l s t d : : s t r i n g DumpFileName () ;
v i r t u a l vo id Output (s t d : : os t ream & osOutSt ream) ;
v i r t u a l bool OmmitOutputFromParent () ;

} ;

Listing 2: ARPPacket definition (include/arppacket.h)

ARPPacket(uchar*, Packet*, bool)
Most of the important code for a packet parser goes into
the constructor. Usually you cast the incoming buffer pc-
Packet to a structure, which corresponds to the packet for-
mat you are parsing. You usually find definitions for those
structures in the system header filese. Note that this has
the disadvantage of creating a dependency on the system
header files which may cause issues when porting Netsniff
to other platforms. For ARP you find the structure def-
inition in /usr/include/net/ifarp.h. The structure we are
interested in is shown in Listing3.

s t r u c t a r p h d r {
u s h o r t a r h r d ; /∗ f o rma t o f hardware add ress∗ /
u s h o r t a r p r o ; /∗ f o rma t o f p r o t o c o l add ress∗ /
u c h a r a r h l n ; /∗ l e n g t h o f hardware add ress∗ /
u c h a r a r p l n ; /∗ l e n g t h o f p r o t o c o l add ress∗ /
u s h o r t a r o p ; /∗ one o f : ∗ /

i f d e f COMMENT ONLY
u c h a r a r s h a [] ; /∗ sende r hardware add ress∗ /
u c h a r a r s p a [] ; /∗ sende r p r o t o c o l add ress∗ /
u c h a r a r t h a [] ; /∗ t a r g e t hardware add ress∗ /
u c h a r a r t p a [] ; /∗ t a r g e t p r o t o c o l add ress∗ /

e n d i f
} ;

Listing 3: ARP structure as defined in<net/if arp.h>

string DumpFileName()
This method must return the filename of the file, you want
Netsniff to write the log to. This will correspond to the
ostream passed into the method Output described below.

void Output(ostream)
In this method you output the information parsed and
stored by the packet’s constructor. For the ARP case this
is probably exactly the information in the packet, so you
could make it look like this:

2004−09−29 10:42:46.814500 Headers (1 4) Pay load (4 6)
1 2 0 4 8 6 4 1 0 0 0 4 dd38

a402 1 3 6 . 1 8 6 . 2 2 9 . 2 0 0 0 0 0 0 0 0 0 0 0 0 1 3 6 . 1 8 6 . 2 2 9 . 1 1 7

Listing 4: example output in arp.log

bool OmmitOutputFromParent()
As obvious from Figure1 Netsniff has a chain of protocol
packets, which each has in term its own Output function.
These are called in the order the packets are nested in each
other, for instance Ethernet, IP, UDP output in that order.
Sometimes for a particular protocol you want to prevent
the immediate parent from outputting its information. If
OmmitOutputFromParent() returns true, the Output func-
tion in the parent packet won’t output it’s information. In
most cases you don’t need to override this method, though.

C. Construct a sub packet from another packet
Each packet from a particular protocol has to be created
somewhere in the chain of protocol packets. For instance
if it is a packet protocol residing at the Data Link layer
it would most probably be created from pcapdev.cpp, or
if it is a protocol running on top of Ethernet, it would be
created from the EthernetPacket class and thus be placed
in the ethernet.cpp file. This is the case for ARP. Note, that
ARP, to our knowledge, is used by the Ethernet/IP pair
only, although the specification would allow for other link
layers. This means that it’s only placed in etherpacket.cpp.
A snippet from etherpacket.cpp in Listing5 shows where
ARPPacket has to be added.

E t h e r P a c k e t : : E t h e r P a c k e t (uc h a r ∗ pcPacket ,
Packe t ∗ pcParen t ,
bool bAnonymise)

: Packe t (p c P a r e n t)
{

cons t s t r u c t e t h e r h e a d e r ∗ psEtherHdr
= (cons t s t r u c t e t h e r h e a d e r ∗) pcPacke t ;

lHeaderLen = ETHERHDR LEN ;
sw i tch (n t o h s (psEtherHdr−>e t h e r t y p e))
{

case ETHERTYPEIP :
pcSubPacket=new IP Pac ke t (pcPacke t + lHeaderLen ,

t h i s ,
bAnonymise) ;

break ;
case ETHERTYPEARP :

pcSubPacket=new ARPPacket (pcPacke t + lHeaderLen ,
t h i s ,
bAnonymise) ;

break ;
}

}

Listing 5: Adding ARPPacket to EtherPacket (sr-
c/etherpacket.cpp)

VI. A DDING A STREAM-BASED APPLICATION LAYER
PROTOCOL

Typically we are concerned with processing an Appli-
cation that runs over TCP. The existing netsniff code
will automatically reconstruct the TCP Stream and ex-
tract TCP level information for us. This allows us to con-
struct a parser that is concerned only with the application

CAIA Technical Report 050204B February 2005 page 3 of8

layer information. Currently netsniff supports HTTP, FTP,
HTTPS (over TLS), POP3, SMTP and IMAP4. This sec-
tion describes how to extend netsniff to parse other appli-
cation layer protocols.

The necessary tasks are:

• Subclass the APPParser class defined in appparser.h
(Listing 6).

• Register the port numbers of your Application Layer
protocol with the class factory APPParserFactory de-
fined in appparser.h (Listing7). This is done by call-
ing the method registerAPPParserCreate defined in
the APPParserFactory class.

c l a s s APPParser
{

pub l i c :
APPParser (bool bAnonymiseData ,

TCPStream∗ pTCPStream)
: bAnonymise (bAnonymiseData) ;

v i r t u a l ˜ APPParser () ;

v i r t u a l bool i sTh isApp () ;

v i r t u a l vo id P a r s e C l i e n t
(s t d : : b a s i c s t r i n g<u char> s t r D a t a) ;

v i r t u a l vo id P a r s e S e r v e r
(s t d : : b a s i c s t r i n g<u char> s t r D a t a) ;

v i r t u a l bool Parsed () ;

v i r t u a l s t d : : s t r i n g DumpFileName () ;

v i r t u a l vo id Output (s t d : : os t ream & osOutSt ream) ;

s t a t i c APPParser∗ c r e a t e
(bool bAnonymiseData , TCPStream∗ pTCPStream) ;

p ro tec ted :
bool bAnonymise ;

} ;

Listing 6: APPParser definition (include/appparser.h)

c l a s s APPParse rFac to ry
{

pub l i c :
t ypede f APPParser∗ (∗ APPParse rCrea te)

(bool bAnonymous , TCPStream∗ pTCPStream) ;

s t a t i c APPParse rFac to ry∗ I n s t a n c e () ;

s t a t i c bool r e g i s t e r A P P P a r s e r C r e a t e
(u s h o r t po r t ,

APPParse rCrea te c r e a t o r) ;

s t a t i c APPParser∗ ge tAPPParser
(u s h o r t usPor t ,

bool bAnonymous ,
TCPStream∗ pTCPStream) ;

p r i v a t e :
APPParse rFac to ry () ;
s t d : : map<u s h o r t , APPParserCreate> appparserMap ;

} ;

Listing 7: APPParserFactory definition (in-
clude/appparser.h)

The virtual methods you should overload in your APP-
Parser class are:

A. ParseClient
Since data from the TCP Stream is collected a portion at a
time, we will never have the entire bit-stream to process.
The underlying TCPStream class will reconstruct the bit-
stream in the correct order and pass portions to your class
in the ParseClient() and ParseServer() methods. Your im-
plementation should parse this data block in restartable
blocks for any relevant information and store this informa-
tion for later output. Your constructor will be called with
an Anonymisation flag which you should honour when ei-
ther processing or outputting information. The data passed
to this method is the bit-stream passed from the Client to
the Server.

B. ParseServer
Should perform the same task as ParseClient() except that
the bit-stream is that passed from the Server to the Client.

C. Parsed
Returns whether this TCP Stream is parsed or not, this
should be overloaded to return true. The base class returns
false to ensure that underlying packets are dumped to the
not-parsed file.

D. DumpFileName
Returns the file name to dump all logged information too.
As per a Packet-type application, netsniff will ensure the
file is created in the correct directory. This should be
overloaded based on the application being parsed. The
base class ensures all TCP Stream information that is not
specifically parsed is dumped to ”tcpstream.txt”

E. Output
As per the Packet-type parsers, you should output any
logged information to the provided output stream in this
method. This method is automatically called when the
TCP Stream has terminated.

F. Create
This is the function called by the APPParserFactory. You
want to create a dynamically allocated object (with new)
by calling the constructor that you have implemented and
that has the same arguments and return it. Netsniff will
worry about the deallocation of that object.

VII. E XAMPLE OF STREAM-BASED APPLICATION LAYER
PROTOCOL

A. FTP a simple example
In order to clarify the concepts summarized above, we will
outline how the FTP parser in Netsniff is implemented.
FTP in the form most people use, is not very complicated.
RFC959 [4] describes its basic version, but a lot of exten-
sions have been added in the years since its writing. In
case you’re interested, [5] is a valuable summary of many
extensions added to FTP.

We assume, that Netsniff monitors the control connec-
tion between server and client. This protocol is usually a
client command followed by a server reply either complete
or temporary. Which means, that the server and client

CAIA Technical Report 050204B February 2005 page 4 of8

are taking turns. FTP can also open additional connec-
tions via the use of the PORT, PASV or EPSV commands.
These TCP connections are established to transfer larger
ammounts of data such as file transfers and directory list-
ings. The data we collect in the FTP parser is listed in
the output grammar shown in Listing8. If we look at the
ftp log line2 production, we see that this is used to as-
sociate the control connection with the data connections
used. An example output is shown in Listing9.

B. FTP parser implementation
Although the implementation of FTP is quite straight for-
ward, it is not shown in this document, because it is still
quite big. We recommend using a hash map to parse pro-
tocols that are textual, since this is not only more efficient
when having many commands, but makes the code mostly
automatic to generate.

f t p o u t p u t : : = t c p o u t p u t
f t p l o g l i n e 1
f t p l o g l i n e 2

f t p l o g l i n e 1 : : = (f t p u s e r n a m e |
f t p a n o n y m i z e d u s e r) SP
’ ” ’ f t p o s s t r i n g ’ ” ’
SP
f t p f i l e o p e r a t i o n s SP
f t p e r r o r f i l e o p e r a t i o n s
SP
f t p u n i m p l e m e n t e d SP
f t p e r r o r r e s p o n s e s SP
f tp unknown cmds SP
f tp anonymous SP
f t p l o g i n CRLF

f t p l o g l i n e 2 : : = ∗ ((” LIST ” | ”RETR” | ”SEND”)
SP
f t p d a t a s t r e a m p o r t
CRLF

}
f t p u s e r n a m e : : = STRING
f t p a n o n y m i z e d u s e r : : = STRING
f t p o s s t r i n g : : = STRING
f t p d a t a s t r e a m p o r t : : = NUMBER
f t p f i l e o p e r a t i o n s : : = NUMBER
f t p e r r o r f i l e o p s : : = NUMBER
f t p u n i m p l e m e n t e d : : = NUMBER
f t p e r r o r r e s p o n s e s : : = NUMBER
ftp unknown cmds : : = NUMBER
f tp anonymous : : = BOOL
f t p l o g i n : : = BOOL

Listing 8: Output grammar FTPParser

VIII. A NONYMISATION TOOLS

Netsniff is expected to be able to anonymise potentially
sensitive information if it is executed with the correct
flags. However, to allow for correlation between applica-
tions and sessions, we would like to be able to determine
if usernames, email addresses and/or IP addresses are re-
peated. To help ensure this is the case, netsniff includes a
series of classes that perform these functions. If you need
to anonymise any of the given data types, you can do so
using the provided classes.

A. IP Address Anonymisation
The IPAddressMap class anonymises addresses using a
similar algorithm to that used by tcpdpriv running with the
-A 50 flag. The class maintains a map of seen IP addresses

2004−11−16 14 :37 :41 .561382 45 .139418 127 .0 .0 .1
: 4 4 9 9 1 2 7 . 0 . 0 . 1 : 2 1 1 4 0 1 3 6 0 6 5 3 1 1 0 0 1 5 0 3 6 0 0
Hops C l i e n t : , 0 , 2 6 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ,
0 , 0 ,
0 , 0 ,
0 , 0 ,
0 , 0 ,
0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0
Hops S e r v e r : , 0 , 2 1 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ,
0 , 0 ,
0 , 0 ,
0 , 0 ,
0 , 0 ,
0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0
RTT: , 5 0 , 6 4 , 6 4 , 4 6 , 4 6 , 3 1
J i t t e r : , 3 6 , 2 9 , 2 9 , 4 1 , 4 1 , 4 1
u k e l l e r ”UNIX Type : L8 Vers ion : BSD−199506”

2 1 0 1 1
LIST 64466
RETR 50831
SEND 54099

Listing 9: Example output from FTP

to anonymised IP addresses so that the same IP address
will be mapped to the same anonymised IP address. The
implementation also maintains network locality informa-
tion between two IP addresses in their anonymised form.
If a new IP address is seen, the implementation will allo-
cate a new anonymised address for the mapping.

If your parser processes IP addresses in its log output,
you should use IPAddressMap in the case of the anonymi-
sation flag being set. To use IPAddressMap you can call:

IPPacket::AddressAnonymiser()\
->Map(in_addr_t ipAddress)

on the IP address that is to be anonymised, where ipAd-
dress is a 32 bit integer representing an IP address. Also
make sure to pass in the address in network byte-order.

B. Hashing of strings
Strings are anonymised using secure hashing [6]. Strings
are anonymised with a random key, which is regenerated
at each start of netsniff or with a key read from file, which
is specified on the command-line. The output of the string
anonymisation is a hex string which (nearly) uniquely rep-
resents the original input string. Comparison of similar
input strings is not possible since the hash function has
the required property of equally dispersing strings in the
input-space into the output-space. A solution to this is
to have a more intelligent function, which actually breaks
down the string to sub strings which characterize the orig-
inal string. For an URL such as:

http://www.mozilla.org/products/index.html

this could be something like:

http:// +
hash(’www’) + ’.’ +
hash(’mozilla’) + ’.’ +
hash(’org’) + ’/’ +
hash(’products’) + ’/’ +
hash(’index.html’)

For a simple user-name, for which we currently use string
anonymisation the current scheme is certainly sufficient.

CAIA Technical Report 050204B February 2005 page 5 of8

IX. A DDING TO THE LOGFILEPARSER

For each packet type or application layer protocol sup-
ported, Netsniff creates an output file, which is in text for-
mat. These files are usually kept with as little overhead in
them as necessary. In order to create useful statistics on
the data Netsniff collects, we decided to write a log file
parser, that writes the data into a database. The back ends
currently supported are Sqlite and Sqlite3 [7], it should be
a small effort to add other more powerful database back
ends when needed.

If Netsniff is extended with additional protocols, it is
also necessary to adopt the database and the log file parser.
The following subsections will describe how this is done
for FTP.

A. Extending the Database
The database Netsniff uses was designed with the DBDe-
signer4 tool [8]. It is released under GPL and runs on
Windows, Linux and the Linux emulation under FreeBSD.
More information on how to install DBDesigner4 is pro-
vided in AppendixA. Its use is quite straight forward and
very similar to other DBM tools.

If we go back to Listing8, which describes the out-
put grammar for FTP, we can identify how data should be
split into tables. Figure3 shows how the database schema
has been extended for FTP. Note that the table FTPDat-
aConnections corresponds to ftplog line2 and the tables
FTPOS and FTP to ftplog line1. We see also, that an FTP
control connection, to which tuples in the table FTP corre-
spond, are uniquely defined by its underlying TCP stream
and can therefore inherit their keys. This is called gen-
eralization. The table FTPDataConnections relates TCP
streams to an FTP control connection. These streams are,
as described above, used to transfer files or directory list-
ings. Further the table FTPOS has been introduced to save
space on assumption that the number of distinct operating
system strings is inferior to the number of FTP connec-
tions.

Once one has designed the table and it matches the
output generated from Netsniff, the create script can be
exported using the export function in DBDesigner4. Be-
cause DBDesigner4 is optimized for MySQL the create
script needs to be massaged a bit. For Sqlite the following
modifications will do:

• NO ACTION: (when using ON DELETE or ON UP-
DATE) Sqlite does not support NO ACTION, which
means that strings ON UPDATE NO ACTION and
ON DELETE NO ACTION have to be removed.

• NOT NULL: since Sqlite doesn’t support
AUTO INCREMENT, it works around it, by
inserting a NULL value into a primary key defined
as (SIGNED) INTEGER. This will generate an auto
increment value. It has the drawback, that you can’t
specify a primary key as NOT NULL. Note that a
primary key can never be NULL and so this check is
redundant, but DBDesigner4 and other Design tools
add them nevertheless, which means a bit more of
Find/Replace for us.

Figure 3: TCP/FTP SQL Tables

• UNSIGNED: in keys (see NOT NULL)

• AUTO INCREMENT: (see NOT NULL)

The DBDesigner4 forum states, that in the next couple
of months full Sqlite support will be added, which hope-
fully means a direct export to Sqlite.

Once the SQL create script has been massaged, it is
recommended to test it with Sqlite’s command line utility.
On a terminal type:

sqlite test.db

And paste the script into the terminal. There must not be
any errors when doing this with an empty database (pass-
ing a non existing file as argument to Sqlite). You can also
pipe your database create script to Sqlite:

sqlite test.db < DBCreate.sql

If this hasn’t produced errors the SQL commands have
to be added to the sqlstrings.cpp file in the createtable
string. Note that currently only Sqlite(3) is supported and
therefore the SQL statements are hard coded in the source
code.

CAIA Technical Report 050204B February 2005 page 6 of8

B. Adding a log file parser
The actual parser is implemented by implementing one ore
more classes extending from the Parser class and adding
an entry function to the class ParserEntries. This process
is described in the following paragraphs.

If we have a look at the output grammar specification
from Listing 8 and the database schema in Figure 3, we
can identify a simple way to create a parser. We create:

• A class for the FTPDataconnections, corresponding
to ftp output line2.

• A class for FTP, which corresponds to ftpoutput
line1

• A class for ftpoutput, which encapsulates the above
two classes.

A parser for the TCPStream table to process the tcp output
is already implemented.

If we have a look at the output grammar specification
from Listing 8 and the database schema in Figure3, we
can identify a simple way, to create a parser. We create
a class for the FTPDataconnections, which corresponds
to ftp output line2, a class for FTP, which corresponds to
ftp output line1 and a class, which sort of encapsulates the
two of them, which is ftpoutput. A parser for the TCP-
Stream table respectively the tcpoutput is already imple-
mented, so we can just call this functionality.

The interface to the three classes is shown in List-
ing 10. The entry point to our parser is in the ftp output
class. This means that we have to add an entry to that
function in the ParserEntries class. Listing11 shows how
this is done, defining a function creating the parser object,
calling transact on it and adding an entry to a map (which
maps filename to function). Entries are kept in topological
order, meaning an entry that depends on another has to be
placed after the one it depends on.

Now we have registered the entry to the parser and
defined the classes representing the data, we need to im-
plement the parser functionality. Many pieces of this func-
tionality have already been built for other log file parsers
and are available in the Lexer class from which Parser is
a direct subclass. Listing13 and13 show ftpoutput and
ftp log line1 respectively. The implementation from List-
ing 13 looks very similar to its corresponding grammar in
Listing 8.

The last step is to implement the toSql function in each
subclass of Parser. In case of ftplog line1 this is quite
simple, since all except osstring goes into the same table.
Listing 14shows a simplified version on how this is done.

The entry point to the toSql function in ftpoutput is
the method transact, this can be seen in Listing11. Trans-
act calls ftpoutput::toSql() which in turn calls the toSql()
functions of ftplog line1 and ftplog line2 (Listing15).

Having implemented all these steps, the parser can be
tested by:

logfileparser -sqlite test.db ftp.log

Where ftp.log is a log file generated by Netsniff, when
parsing FTP traffic and test.db is either a new or pre-

c l a s s f t p l o g l i n e 1 : pub l i c P a r s e r
{
pub l i c :

f t p l o g l i n e 1 (P a r s e r & p a r s e r) ;
v i r t u a l long long t o S q l (long long pk) ;
s t d : : s t r i n g username ;
s t d : : s t r i n g f t p o s s t r i n g ;
long long f i l e o p e r a t i o n s ;
long long e r r o r f i l e o p e r a t i o n s ;
long long unimplemented ;
long long e r r o r r e s p o n s e s ;
long long unknown commands ;
bool anonymous ;
bool l o g i n ;

} ;

c l a s s f t p l o g l i n e 2 : pub l i c P a r s e r
{
pub l i c :

f t p l o g l i n e 2 (P a r s e r & p a r s e r) ;
v i r t u a l long long t o S q l (long long pk) ;
s t d : : mult imap<s t d : : s t r i n g , unsigned in t>

c o n n e c t i o n L i s t ;
} ;

c l a s s f t p o u t p u t : pub l i c P a r s e r
{
pub l i c :

f t p o u t p u t (P a r s e r & p a r s e r) ;
v i r t u a l ˜ f t p o u t p u t () ;
v i r t u a l long long t o S q l () ;
t c p o u t p u t ∗ t p o u t p u t ;
f t p l o g l i n e 1 ∗ l 1 ;
f t p l o g l i n e 2 ∗ l 2 ;

} ;

Listing 10: Class definitions (statistic/in-
clude/ftpoutput.hpp)

c l a s s P a r s e r E n t r i e s
{

s t a t i c bool s t a t i c I n i t ()
{

. . . .
fmap . pushback (f p a i r t (” f t p . l og ” , f t p)) ;

. . . .
}

. . . .
s t a t i c vo id f t p (P a r s e r & p a r s e r){

f t p o u t p u t (p a r s e r) . t r a n s a c t () ;
}

} ;

Listing 11: Additions in class parser entries (statis-
tic/include/parserentries.hpp)

f t p o u t p u t : : f t p o u t p u t (P a r s e r & p a r s e r)
: P a r s e r (p a r s e r)

{
t p o u t p u t = new t c p o u t p u t (p a r s e r) ;
l 1 = new f t p l o g l i n e 1 (p a r s e r) ;
l 2 = new f t p l o g l i n e 2 (p a r s e r) ;
s k i p L i n e () ;

}

Listing 12: ftpoutput (statistic/src/ftpoutput.cpp)

existing Netsniff database. This will parse ftp.log and cre-
ate a database in test.db. The database can then be queried
in the Sqlite console, which is accessed by:

sqlite test.db

CAIA Technical Report 050204B February 2005 page 7 of8

f t p l o g l i n e 1 : : f t p l o g l i n e 1 (P a r s e r & p a r s e r)
: P a r s e r (p a r s e r)

{
username = g e t S t r i n g () ; getSP () ;
o s s t r i n g = g e t Q u o t e d S t r i n g () ; getSP () ;
f i l e o p e r a t i o n s = g e t I n t e g e r () ; getSP () ;
e r r o r f i l e o p e r a t i o n s = g e t I n t e g e r () ; getSP () ;
un implemented = g e t I n t e g e r () ; getSP () ;
e r r o r r e s p o n s e s = g e t I n t e g e r () ; getSP () ;
unknown commands = g e t I n t e g e r () ; getSP () ;
anonymous = g e t I n t e g e r () ; getSP () ;
l o g i n = g e t I n t e g e r () ; getSP () ;
s k i p L i n e () ;

}

Listing 13: ftp log line1 (statistic/src/ftpoutput.cpp)

long long f t p l o g l i n e 1 : : t o S q l (long long pk)
{

. . . .

o s t r i n g s t r e a m qs2 ;
qs2 << ” i n s e r t i n t o FTP v a l u e s (”

<< pk << ” , ”
<< ospk << ” , ”
<< ” ’ ” << username<< ” ’ , ”
<< f i l e o p e r a t i o n s<< ” , ”
<< e r r o r f i l e o p e r a t i o n s<< ” , ”
<< unimplemented<< ” , ”
<< e r r o r r e s p o n s e s<< ” , ”
<< unknown commands<< ” , ”
<< anonymous<< ” , ”
<< l o g i n << ”) ; ” ;

P a r s e r : : t o S q l (qs2 . s t r ()) ;
re turn 0 ;

}

Listing 14: ftp log line1 toSql() (statistic/sr-
c/ftp output.cpp)

long long f t p o u t p u t : : t o S q l ()
{

long long t c p k e y = t p o u t p u t−>t o S q l () ;
l1−>t o S q l (t c p k e y) ;
l2−>t o S q l (t c p k e y) ;
re turn 0 ;

}

Listing 15: ftpoutput toSql() (statistic/src/ftpoutput.cpp)

X. CONCLUSION

In this technical report we described how to extend Net-
sniff with an additional packet level and application level
parser. We further described how to adopt the log file
parser tool and its database, in order to reflect the changes
made in Netsniff. This document hopefully serves as a
guide line for future improvements, additions and devel-
opment on Netsniff.

REFERENCES
[1] Keller U. and But J. ”Netsniff - Design and Implementation Concepts”.

Technical Report 050204A, CAIA, February 2005.http://caia.
swin.edu.au/reports/050204A/CAIA-TR050204A.pdf .

[2] Centre for Advanced Internet Architecture. ”ICE3 Inverted Capacity
Extended Engineering Experiment”, January 2005.http://caia.
swin.edu.au/ice/ .

[3] ”TCPDUMP / PCAP”, January 2005.http://www.tcpdump.org .

[4] J. Postel and J.K. Reynolds. ”File Transfer Protocol”.RFC 0959, IETF,
October 1985.http://www.ietf.org/rfc/rfc0959.txt .

[5] Network Sorcery. ”FTP, File Transfer Protocol”, January 2005.http:
//www.networksorcery.com/enp/protocol/ftp.htm .

[6] OpenSSL Project. ”HMAC”.http://www.openssl.org/docs/
crypto/hmac.html .

[7] Hipp, D. R. ”SQLite”, October 2004.http://www.sqlite.org .

[8] fabFORCE.net. ”Fabulouse Force Database Tools, DBDesigner4”, Jan-
uary 2005.http://www.fabforce.net/dbdesigner4/ .

[9] Borland Software Corporation. ”Kylix 3”, January 2005.http://
www.borland.com/kylix/ .

[10] Brovienas, L.J. and Lopez-Cabanillas, P. ”kylixlibs”, January 2005.
http://kylixlibs.sourceforge.net/ .

XI. A PPENDIX
A. Installing DBDesigner4 under FreeBSD
DBDesigner4 can be obtained from [8]. It works well on
linux base-8-8.04. Other versions of linuxbase haven’t
been tested. DBDesigner4 is a Kylix [9] application and
depends on the Kylix libraries. They can be obtained
from [10]. You will probably only need libborqt. Copy
it to /compat/linux, chroot to /compat/linux and install the
package. For the Redhat based linuxbase this looks like
this:

chroot /compat/linux bash
rpm -Uhv --nodeps \
libborqt-6.9.0-1.i386.rpm

You can now unpack the DBDesigner4 tar ball ob-
tained from [8] and start with ./DBDesigner4 from the di-
rectory.

B. Netsniff ’s directory structure
• ice/netsniffNetsniff’s base directory.

• ice/netsniff/src contains the header and source file
for Netsniff.

• ice/netsniff/scripts scripts, which are used in gate-
way boxes, installed with Netsniff.

• ice/netsniff/statistic contains the Netsniff log file
parser.

• ice/netsniff/statistic/DOC documentation and
database diagrams for the log file parser

• ice/netsniff/statistic/srcsource code for the log file
parser.

C. Checking out Netsniff from CVS
Netsniff lives in the CVS repository on mordor. To check
it out from CVS you need an account on mordor and the
necessary rights on the /home/cvs/ice/. In order to check-
out Netsniff type in a (t)csh shell:

setenv SSH_RSH ssh
cvs -d :ext:mordor co ice/netsniff

This will checkout the HEAD of Netsniff from CVS.
If you are not doing development, you might want to con-
sider to get the latest tagged version instead.

CAIA Technical Report 050204B February 2005 page 8 of8

http://caia.swin.edu.au/reports/050204A/CAIA-TR 050204A.pdf
http://caia.swin.edu.au/reports/050204A/CAIA-TR 050204A.pdf
http://caia.swin.edu.au/ice/
http://caia.swin.edu.au/ice/
http://www.tcpdump.org
http://www.ietf.org/rfc/rfc0959.txt
http://www.networksorcery.com/enp/protocol/ftp.htm
http://www.networksorcery.com/enp/protocol/ftp.htm
http://www.openssl.org/docs/crypto/hmac.html
http://www.openssl.org/docs/crypto/hmac.html
http://www.sqlite.org
http://www.fabforce.net/dbdesigner4/
http://www.borland.com/kylix/
http://www.borland.com/kylix/
http://kylixlibs.sourceforge.net/

	Introduction
	Structure
	Adding a physical and link-layer protocol
	Constructor
	Destructor
	ParseStream
	Output

	Adding a Packet-Based Application Layer Protocol
	Constructor
	DumpFileName

	Example of Packet-Based Application Layer Protocol
	Output definition
	Extend Packet
	ARPPacket(u_char*, Packet*, bool)
	string DumpFileName()
	void Output(ostream)
	bool OmmitOutputFromParent()

	Construct a sub packet from another packet

	Adding a Stream-Based Application Layer Protocol
	ParseClient
	ParseServer
	Parsed
	DumpFileName
	Output
	Create

	Example of Stream-Based Application Layer Protocol
	FTP a simple example
	FTP parser implementation

	Anonymisation Tools
	IP Address Anonymisation
	Hashing of strings

	Adding to the logfileparser
	Extending the Database
	Adding a log file parser

	Conclusion
	References
	Appendix
	Installing DBDesigner4 under FreeBSD
	Netsniff's directory structure
	Checking out Netsniff from CVS

