Extending Netsniff

Urs Kellert Jason But
Centre for Advanced Interent Architectures. Technical Report 050204B
Swinburne University of Technology
Melbourne, Australia
urs.keller@epfl.chbut@swin.edu.au

Abstract— This technical report describes, how to extend net- types are currently checked for within a particular packet
sniff with additional stream and packet level parser. It also de- type. The PCAPDev class is not a packet in its own right
scribes how to extend the log file parser and database, that were) . . . ’
built to do statistics on the data collected by Netsniff. but contains the function called by the pcap libre8lygnd

_ _ creates the first instance of the Packet class used to process
Keywords— Netsniff, Extension, Stream-parser, Packet-parser the captured data.

I. INTRODUCTION

Netsniff [1] was developed as part of ti€' E3 project P] ~FPCAPDev

to capture and analyze network traffic, producing applica- . </ o

tion level information. Itis currently deployed in a handful | :PPoESessionPacket | : EtherPacket | | NullPacket |
of home-based DSL installations of CAIA researchers. It v\ /

will hopefully be deployed further in the near future. This /

report describes how to extend Netsniff to support more

protocols and applications by adding additional software ' e
modules to the application. It also explains how to extend
the Netsniff database used to generate statistical results on E UDPF;;cket‘ | ;%cépacket\

the collected data. The directory structure for the Netsniff
project is described in more detail in Appendix

L

Il. STRUCTURE :DNSFacket

Netsniff is based on an object-oriented design and imple-
mented using C++. The underlying pcap libra8yif used Figure 1: Collaboration Diagram of packet classes
to capture all network traffic which is then passed on to a
class hierarchy for parsing and logging of relevant infor-

mation. The hierarchical layout allows a packet header t%rnet device, the PCAPDev class will construct an Ether-

be processed for information by a single class which the?’acket instance which will process the Ethernet head-
decides whether to pass the enclosed payload to anothg

class for processing. This structured lavout allows Net' fs and construct an IPPacket instance. This class pro-
: proce g. _ y cesses the IP header and constructs an ICMPPacket in-
sniff to be easily extended to support:

stance which processes the remainder of the payload. This

For example, if an ICMP packet is captured on an Eth-

« Different physical and link-layer protocols design allows parsing of ICMP packets over a variety of
underlaying protocols as long as their parsers are com-

e New Transport Layer protocols plete

e New Application Layer Protocols. Current Stream level processing is shown in Fig2jre

Netsniff works slightly differently with stream based indicating which applications running over a TCP session

protocols such as TCP Streams. Netsniff uses a TCPRY® currently processed and logged for information.
Stream instance to reconstruct an entire TCP Stream - ANy packets that are not processed as part of a sup-
gathering TCP level statistics in the process - and paSQ_orted _appllcatlon are qutomatlcally shortened to 68 bytes
ing the TCP bit-stream to an application level parser fo2nd written to a log file in tcpdump format.

further processing.

As such, captured packets are processed both at thel!ll. ADDING A PHYSICAL AND LINK -LAYER PROTOCOL
packet level and at the stream level where appropriatdo add a different protocol at this level, we need to:
Current implementation of packet level processing is in-
dicated in Figurel where an arrow indicates what packet e Decide what data to collect and output.

LUrs Keller worked on Netsniff while visiting CAIA fromthe Swiss @ Subclass the Packet class to create a new class type
Federal Institute in LausantiéP F L. to handle the required protocol.

CAIA Technical Report 050204B February 2005 page 1 &f

mailto:urs.keller@epfl.ch
mailto:jbut@swin.edu.au

mentation for an example on how to process other stream
based protocols.

‘ : TCPStreammanager ‘

s D. Output
If any information retrieved at this layer should be logged,
@ this is where the work is done. Generally the packet
TN~ header will be parsed in the constructor and relevant in-
/ ff:;;:\ formation stored in member variables. This method is au-
= tomatically called with an output stream to output any in-

formation about this level of the protocol tree. Any im-
plementation should also call the Output() method on any

L= T further encapsulated packets so that all processed informa-
tion about the packet is output. If your packet parser will
Figure 2: Stream level protocols not log any information, the default implementation will

automatically call the sub-packet Output() method.

e Modify code to create an instance of the new class V. AbDING A PACKET-BASED APPLICATION LAYER
at the correct level (e.g. If implementing an ATM PrROTOCOL
parser, perhaps the ATMPacket class would be creApplications that fall into this category perform all their
ated within PCAPDeyv, if implementing an ARP communications at the Packet level rather than a Stream
parser, we would perhaps create the ARPPacket classvel. Examples include DNS, NFS and ARP. The same
within EtherPacket. steps apply as creating a mid-layered parser, we need to
subclass the Packet class, however there are a few other
The virtual methods within Packet that must be overtasks to perform.
loaded are:
A. Constructor
A. Constructor Set the bParsed member variable to true. This will ensure
The constructor should call the base class constructor witthat information is logged to a log file rather that the tcp-
a pointer to its encapsulating packet. This allows packedump format file. Do not set pcSubPacket to any value,
classes further down the protocol tree the ability to backleave it with its default NULL value.
track and request information from parent packets. If the
packet type contains an encapsulated packet that is pr8- DumpFileName
cessed by another class, this class should be created gauserload this method to return the file name to dump
assigned to pcSubPacket. If any information in the headgracket information to. This should only return a file name,
is to be processed, it must be done in the constructothe application code will automatically prepend the cor-
Once the packet is completely processed, the memory alect directory location to this filename. The default imple-
located to store the packet contents will be discarded. Ifnentation returns "/dev/null” to direct logged traffic to.
the packet and/or header contents are required for other
purposes they should either be copied or extracted in the V. EXAMPLE OF PACKET-BASED APPLICATION LAYER
class header. _ PrROTOCOL o _
The PCAPDev class maintains the global netsniffVe try to explain the process described in the previous

anonymisation flag, which can (and should) be passe§€ction by giving an example. We will discuss the imple-
to the Packet (and inherited) class constructors. ThEentation of the ARPPacket class by outlining the follow-

anonymisation flag can tell your constructor whether itn9 Steps:

should anonymise any potentially sensitive information.

Your constructor should also pass the anonymise flag to

any lower level packet parsers. Anonymisation services ® Subclass the Packet class

provided by netsniff are outlined in Sectidfll . e Create an instance of the created Packet class from
another packet or from PCAPDev itself.

e Decide what data to collect

B. Destructor

Free any resources allocated in the constructor. A. Output definition
The data you want to collect can be conveniently specified
C. ParseStream by an output grammar. We will see later, that having a

If this packet forms part of a stream and is the lowest leveBNF grammar, is handy when building a parser for the log
of information before the stream is identified, then thisfiles produced by Netsniff. The grammar for ARPPacket
method should be overloaded to support the processing &f shown in Listingl and how the output eventually looks
that stream. At the moment, this method is only imple-ike in Listing 1.

mented in the TCPPacket class to construct and maintain Once we have decided on what data to include in the
TCP Streams. Please see the existing TCPPacket impleutput file, we can start writing the code.

CAIA Technical Report 050204B February 2005 page 2 &f

arp-output
arp_log_line :

packetoutput SP arplog-line
ar_hrd SP atpro SP

ar_hln SP acrpln SP

ar.op SP

ar_.sha SP arspa SP

ar_tha SP artpa

Listing 1: Grammar for ARP lodine

2004—09—-29 10:42:46.814500 Headers (14) Payload (46)
12048 6 41 0004dd38
a402 136.186.229.2 000000000000 136.186.229.117

Listing 4. example output in arp.log

bool OmmitOutputFromParent()

B. Extend Packet
The Packet class defines the interface shown in Li2ing
What follows is a more detailed method description.

class ARPPacket : public Packet

public:
ARPPacket(uchar xpcPacket,
PacketxpcParent,
bool bAnonymise);
virtual std::string DumpFileName ();
virtual void Output(std::ostream &osOutStream);
virtual bool OmmitOutputFromParent();

s
Listing 2: ARPPacket definition (include/arppacket.h)

ARPPacket(ichar*, Packet*, bool)

Most of the important code for a packet parser goes int
the constructor. Usually you cast the incoming buffer pc-

Packet to a structure, which corresponds to the packet f
mat you are parsing. You usually find definitions for thos

structures in the system header filese. Note that this hﬁ?s

the disadvantage of creating a dependency on the syst

c(Jfétyers. This means thatit’'s only placed in etherpacket.cpp.

As obvious from Figurd Netsniff has a chain of protocol
packets, which each has in term its own Output function.
These are called in the order the packets are nested in each
other, for instance Ethernet, IP, UDP output in that order.
Sometimes for a particular protocol you want to prevent
the immediate parent from outputting its information. If
OmmitOutputFromParent() returns true, the Output func-
tion in the parent packet won't output it’s information. In
most cases you don’t need to override this method, though.

C. Construct a sub packet from another packet

Each packet from a particular protocol has to be created
somewhere in the chain of protocol packets. For instance
if it is a packet protocol residing at the Data Link layer

it would most probably be created from pcapdev.cpp, or
if it is a protocol running on top of Ethernet, it would be
created from the EthernetPacket class and thus be placed
in the ethernet.cpp file. This is the case for ARP. Note, that
RP, to our knowledge, is used by the Ethernet/IP pair
nly, although the specification would allow for other link

nippet from etherpacket.cpp in Listiftigshows where
PPacket has to be added.

if

header files which may cause issues when porting Netsn
to other platforms. For ARP you find the structure def
inition in /usr/include/net/ifarp.h. The structure we are
interested in is shown in Listing.

struct arphdr {

u_short arhrd; /« format of hardware addressx/
u_short arpro; /« format of protocol addressx/
u_char arhln; [/« length of hardware address«/
u_char arpln; [/« length of protocol addressx/
u_short arop; /x one of: x/

#ifdef COMMENTONLY

u_char arsha[]; /* sender hardware address:/
u_char arspal[]; /+* sender protocol address«/
u_char artha[]; /* target hardware addressx/
u_char artpal[]; /« target protocol addressx/
#endif

s

Listing 3: ARP structure as defined inet/if.arp.h>

 EtherPacket :: EtherPacket (ahar xpcPacket,
PacketxpcParent,
bool bAnonymise)
: Packet(pcParent)

const struct etherheaderxpsEtherHdr

= (const struct ether.header x) pcPacket;
IHeaderLen = ETHERHDR_LEN;
switch (ntohs(psEtherHdr>ether.type))

case ETHERTYPEIP:
pcSubPacketrew IPPacket(pcPacket+lHeaderLen,
this ,
bAnonymise);
break;
case ETHERTYPEARP:
pcSubPacketrew ARPPacket(pcPacket+IHeaderLen,
this ,
bAnonymise);
break;

}

string DumpFileName()

Listing 5: Adding ARPPacket to EtherPacket (sr-
c/etherpacket.cpp)

This method must return the filename of the file, you want

Netsniff to write the log to. This will correspond to the

ostream passed into the method Output described below. VI. AbbING A STREAM-BASED APPLICATION LAYER

void Output(ostream)

ProTOCOL
Typically we are concerned with processing an Appli-

In this method you output the information parsed anccation that runs over TCP. The existing netsniff code
stored by the packet’s constructor. For the ARP case thiwill automatically reconstruct the TCP Stream and ex-
is probably exactly the information in the packet, so youtract TCP level information for us. This allows us to con-

could make it look like this: struct a parser that is concerned only with the application

CAIA Technical Report 050204B February 2005 page 3 &f

layer information. Currently netsniff supports HTTP, FTP,A. ParseClient

HTTPS (over TLS), POP3, SMTP and IMAP4. This sec-Since data from the TCP Stream is collected a portion at a

tion describes how to extend netsniff to parse other applitime, we will never have the entire bit-stream to process.

cation layer protocols. The underlying TCPStream class will reconstruct the bit-
The necessary tasks are: stream in the correct order and pass portions to your class

e Subclass the APPParser class defined in appparseththe ParseClient() and ParseServer() methods. Your im-
(Listing 6). plementation should parse this data block in restartable

. . blocks for any relevant information and store this informa-
e Register the port numbers of your Application Layer y

| with the class f APPP F d tion for later output. Your constructor will be called with
protocol with the class factory APPParserractory deg, aponymisation flag which you should honour when ei-
fined in appparser.h (Listing). This is done by call-

X : ! ther processing or outputting information. The data passed
ing the method registerAPPParserCreate defined i b d b g b

the APPParserFactory class.

class APPParser
public:
APPParserbool bAnonymiseData,
TCPStreamx pTCPStream)
: bAnonymise (bAnonymiseData);
virtual ~“APPParser();
virtual bool isThisApp();

virtual void ParseClient
(std:: basicstring<u.char> strData);

virtual void ParseServer
(std :: basicstring<u_char> strData);

virtual bool Parsed();
virtual std::string DumpFileName ();
virtual void Output(std::ostream &osOutStream);

static APPParsex create
(bool bAnonymiseData, TCPStreampTCPStream);

protected:
bool bAnonymise;

b

Listing 6: APPParser definition (include/appparser.h)

class APPParserFactory

public:
typedef APPParsek (x APPParserCreate)
(bool bAnonymous, TCPStream pTCPStream);

static APPParserFactory Instance ();

static bool registerAPPParserCreate
(u_short port,
APPParserCreate creator);

static APPParsex getAPPParser
(u_-short usPort,

bool bAnonymous,

TCPStream pTCPStream);

private :
APPParserFactory ();
std ::mapcu_short , APPParserCreate appparserMap;

b

Listing 7: APPParserFactory definition

clude/appparser.h)

(in-

fb this method is the bit-stream passed from the Client to
the Server.

B. ParseServer
Should perform the same task as ParseClient() except that
the bit-stream is that passed from the Server to the Client.

C. Parsed

Returns whether this TCP Stream is parsed or not, this

should be overloaded to return true. The base class returns
false to ensure that underlying packets are dumped to the
not-parsed file.

D. DumpFileName

Returns the file name to dump all logged information too.
As per a Packet-type application, netsniff will ensure the
file is created in the correct directory. This should be
overloaded based on the application being parsed. The
base class ensures all TCP Stream information that is not
specifically parsed is dumped to "tcpstream.txt”

E. Output

As per the Packet-type parsers, you should output any
logged information to the provided output stream in this

method. This method is automatically called when the

TCP Stream has terminated.

F. Create

This is the function called by the APPParserFactory. You
want to create a dynamically allocated object (with new)
by calling the constructor that you have implemented and
that has the same arguments and return it. Netsniff will
worry about the deallocation of that object.

VIl. EXAMPLE OF STREAM-BASED APPLICATION LAYER
ProTOCOL

A. FTP a simple example
In order to clarify the concepts summarized above, we will
outline how the FTP parser in Netsniff is implemented.
FTP in the form most people use, is not very complicated.
RFC959 f] describes its basic version, but a lot of exten-
sions have been added in the years since its writing. In
case you're interesteds][is a valuable summary of many
extensions added to FTP.

We assume, that Netsniff monitors the control connec-
tion between server and client. This protocol is usually a

The virtual methods you should overload in your APP-client command followed by a server reply either complete

Parser class are:

CAIA Technical Report 050204B

February 2005

or temporary. Which means, that the server and client

page 4 &f

are taking turns. FTP can also open additional connec2004-11-16 14:37:41.561382 45.139418 127.0.0.1
i i ©4499 127.0.0.1:21 140 1360 653 1100 1 50 36 0
tions via the use ofthe PORT, PASV or EPSVcommandsFlops Clients 0.56.0.0,0.0.0.00.00.0.6.0.0.0.0.0,
These TCP connections are established to transfer largero o0 0.0.0.0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.0.0,
ammounts of data such as file transfers and directory Iis;tg 18 ,8 '8 ,8 ’8 '8 18 '8 ,8 18 ,8 '8 ,8 ’8 '8 18 '8 ,8 18 ,8 '8 ,8 '8 ,8,
ings. The data we collect in the FTP parser is listed ing'0'0'0'0'0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.00.0.
the output grammar shown in Listirgy If we look at the |0,0,0,0,0,0,0,0,0,0,0
ftp_log_line2 production, we see that this is used to asH°ps Server: 0.21.9.9.0.9.0.9.0.0.9.0.0.9.0.0.0.0.
sociate the control connection with the data connections,o0,
; o 1 iati 0,
used. An example output is shown in Listifg 0700°0000000000000000000000
0,0,0,0,0,0,0,0,0,0,0
B. FTP parser implementation RTT:,50,64,64,46,46,31
: . , . . Jitter:,36,29,29,41,41,41
AIthou_gh the |mpIeme_ntat|_on of FTP is quite stral_gh_t for_ ukeller "UNIX_Type:.L8_Version : BSD—199506"
ward, it is not shown in this document, because it is still ZSléJ 16%)
quite big. We recommend using a hash map to parse prarn 2 ooa,
tocols that are textual, since this is not only more efficienseND 54099
when ha_vmg many commands, but makes the code mostly Listing 9: Example output from FTP
automatic to generate.
ftp-output T e e et to anonymised IP addresses so that the same IP address
_ ftp_log_line2 will be mapped to the same anonymised IP address. The
ftp_log-linel +:= (ftp-username| implementation also maintains network locality informa-
ftp_anonymizeduser) SP
7 ftp _osstring " tion between two IP addresses in their anonymised form.
?tP fileoperations Sp If a new IP address is seen, the implementation will allo-
Hp error fileoperations cate a new anonymised address for the mapping.
fStP . od sp If your parser processes IP addresses in its log output,
p-unimplemente ; i
ftp_error.responses SP you should use IPAddressMap in the case of the anonymi
ftp_unknowncmds SP sation flag being set. To use IPAddressMap you can call:
ftp_.anonymous SP
_ ftp_login CRLF IPPacket::AddressAnonymiser()\
ftp_log_line2 T *(Sg'usr' | "RETR” | "SEND") _>Map(in_addr t ipAddress)
ftp_.datastreamport . . .
CRpLF P on the IP address that is to be anonymised, where ipAd-
dress is a 32 bit integer representing an IP address. Also
fp-username T SRS ki t in the address in network byte-order
ftp_anonymizeduser :-= STRING make sure to pass in the address in network byte-order.
ftp_osstring := STRING
;{pf?_alltastreatmport n= Nl\llJL'J\/INEISBEEF?R B. Hashing of strings
Hp errorfileops i NUMBER Strings are anonymised using secure hashéiiggtrings
;tp,unimplemented = Nﬂ“&%ﬁi are anonymised with a random key, which is regenerated
tp_error.responses = H H H H
ftp_unknown omds .= NUMBER gt each' start of netsniff or W|th'a key read from file, whlgh
ftp_anonymous = BOOL is specified on the command-line. The output of the string
ftp_login --= BOOL anonymisation is a hex string which (nearly) uniquely rep-
Listing 8: Output grammar FTPParser resents the original input string. Comparison of similar

input strings is not possible since the hash function has
the required property of equally dispersing strings in the
input-space into the output-space. A solution to this is

VIHI. ANONYMISATION TOOLS to have a more intelligent function, which actually breaks

Netsniff is expected to be able to anonymise potentiallyyoyn the string to sub strings which characterize the orig-
sensitive information if it is executed with the correctjng string. For an URL such as:

flags. However, to allow for correlation between applica-

tions and sessions, we would like to be able to determinbttp://www.mozilla.org/products/index.htmi
if usernames, email addresses and/or IP addresses are
peated. To help ensure this is the case, netsniff includes
series of classes that perform these functions. If you neeutp:// +

to anonymise any of the given data types, you can do seash(www’) + .’ +

using the provided classes. hash('mozilla’) + " +
hash(org’) + '/ +
A. IP Address Anonymisation hash(,products)'+ I+
. . _hash(index.html’)
The IPAddressMap class anonymises addresses using a
similar algorithm to that used by tcpdpriv running with the For a simple user-name, for which we currently use string

-A 50 flag. The class maintains a map of seen IP addressasonymisation the current scheme is certainly sufficient.

trﬁé could be something like:

CAIA Technical Report 050204B February 2005 page 5 &f

IX. ADDING TO THE LOGFILEPARSER

For each packet type or application layer protocol sup
ported, Netsniff creates an output file, which is in text for-
mat. These files are usually kept with as little overhead it
them as necessary. In order to create useful statistics «
the data Netsniff collects, we decided to write a log file
parser, that writes the data into a database. The back en
currently supported are Sqlite and Sqlit@3 jt should be

a small effort to add other more powerful database bac
ends when needed.

If Netsniff is extended with additional protocols, it is
also necessary to adopt the database and the log file pars
The following subsections will describe how this is done
for FTP.

A. Extending the Database

The database Netsniff uses was designed with the DBDx
signer4 tool §]. It is released under GPL and runs on
Windows, Linux and the Linux emulation under FreeBSD.
More information on how to install DBDesigner4 is pro-
vided in AppendixA. Its use is quite straight forward and
very similar to other DBM tools.

If we go back to Listing8, which describes the out-
put grammar for FTP, we can identify how data should be
split into tables. Figur8& shows how the database schema
has been extended for FTP. Note that the table FTPDa
aConnections corresponds to_ftg_line2 and the tables
FTPOS and FTP to ftog_linel. We see also, thatan FTP
control connection, to which tuples in the table FTP corre:
spond, are uniquely defined by its underlying TCP strean
and can therefore inherit their keys. This is called gen
eralization. The table FTPDataConnections relates TC
streams to an FTP control connection. These streams al
as described above, used to transfer files or directory lis

TCPStream
% idTCPStream: INTEGER

@ idTransportiPPair INTEGER (FK)

2 timestamp: TIMESTAMP

@ duration: INTEGER

clientZserver_data: INTEGER
clientZserver_overhead: INTEGER
serverzclient_data: INTEGER
serverzclient_overhead: INTEGER
path_hop_count: INTEGER
clientZserver_error_rate: FLOAT
serverzclient_error_rate; FLOAT

jitter: INTEGER

t: INTEGER

client_hops_histogram: INTEGER (FK)
server_hops_histogram: INTEGER (Fk)
t_histogram: INTEGER (FK)
jitter_histogram: INTEGER (Fk)

“ hasapplayer: BOOL

“ anonymous: BOOL

3

CEL OO OO 0000 e0

<

idTCPStream: INTEGER (FE)
FTROS_idFTRPOS: INTEGER (FK)
username: ¥ARCHAR
fileoperations: INTEGER
error_fileoperations: INTEGER
unimplemented: INTEGER
error_responses: INTEGER
unknmun_cmds: INTEGER
anonymous: BOOL
login: BOOL
4]\
,_

COOC o e e OO e

0

FTPDataConnection -
"? TCPStream_idTCPStream: INTEGER (FK)
¥ FTP jdTCPStream: INTEGER (FK)

-

\ETEOS
% idFTPOS: INTEGER

osstring: YARCHAR

@ action: WARCHARM

ings. Further the table FTPOS has been introduced to save

space on assumption that the number of distinct operating
system strings is inferior to the number of FTP connec-

tions.

Once one has designed the table and it matches the

Figure 3: TCP/FTP SQL Tables

e UNSIGNED: in keys (see NOT NULL)

output generated from Netsniff, the create script can be ® AUTO_INCREMENT: (see NOT NULL)

exported using the export function in DBDesigner4. Be-

The DBDesigner4 forum states, that in the next couple

cause DBDesigner4 is optimized for MySQL the createss months full Sqlite support will be added, which hope-
script needs to be massaged a bit. For Sqlite the foIIowng”y means a direct export to Sqlite.

modifications will do:

e NO ACTION: (when using ON DELETE or ON UP-
DATE) Sqlite does not support NO ACTION, which

Once the SQL create script has been massaged, it is

recommended to test it with Sqlite’s command line utility.
On a terminal type:

means that strings ON UPDATE NO ACTION and sqlite test.db

ON DELETE NO ACTION have to be removed.

NOT NULL: since Sqlite doesnt

AUTO_INCREMENT, it works around it, by

And paste the script into the terminal. There must not be
support any errors when doing this with an empty database (pass-
ing a non existing file as argument to Sqlite). You can also

inserting a NULL value into a primary key defined pipe your database create script to Sqlite:

as (SIGNED) INTEGER. This will generate an auto
increment value. It has the drawback, that you can’
specify a primary key as NOT NULL. Note that a

tsqlite test.db < DBCreate.sql

If this hasn’t produced errors the SQL commands have

primary key can never be NULL and so this check isto be added to the sqlstrings.cpp file in the crdatde
redundant, but DBDesigner4 and other Design toolstring. Note that currently only Sqlite(3) is supported and
add them nevertheless, which means a bit more aherefore the SQL statements are hard coded in the source

Find/Replace for us.

CAIA Technical Report 050204B February

code.

2005 page 6 &f

B. Adding a log file parser
The actual parser is implemented by implementing one o
more classes extending from the Parser class and add

an entry function to the class ParserEntries. This proce

is described in the following paragraphs.
If we have a look at the output grammar specificatio

from Listing 8 and the database schema in Figure 3, W

can identify a simple way to create a parser. We create:

e A class for the FTPDataconnections, correspondir

to ftp_outputline2.

e A class for FTP, which corresponds to fpitput
linel

e A class for ftpoutput, which encapsulates the abovg

two classes.

A parser for the TCPStream table to process the tcp outy

is already implemented.
If we have a look at the output grammar specificatio
from Listing 8 and the database schema in Fig8reve

can identify a simple way, to create a parser. We crea

a class for the FTPDataconnections, which correspon

class ftp_log-linel
réublic:

iﬁgftp,log,linel(Parser&parser);
ggVvirtual long long toSql(long long pk);
std :: string username;

: public Parser

std :: string ftp.osstring;

long long fileoperations;

long long error_fileoperations;
long long unimplemented;

long long error.responses;
long long unknowncommands;
bool anonymous;

bool login;

n
e

g
1

class ftp_log-line2 : public Parser
f)ublic:
ftp_log_line2 (Parser &parser);
virtual long long toSql(long long pk);
std :: multimap<std :: string , unsigned int>
connectionlList;
yt

class ftp_output

k

public :

te ftp_output (Parser &parser);
virtual ~ftp_output();

ds virtual long long toSql();

Y

v

. public Parser

D tcp_output % tpoutput;
ftp-log_-linel * I1;

€ ftp_log_line2 * 12;

s

to ftp_outputline2, a class for FTP, which corresponds t¢
ftp_outputlinel and a class, which sort of encapsulates tl]
two of them, which is ftpoutput. A parser for the TCP-
Stream table respectively the topitput is already imple-
mented, so we can just call this functionality.

The interface to the three classes is shown in List-
ing 10. The entry point to our parser is in the ftp output
class. This means that we have to add an entry to t
function in the ParserEntries class. Listibfyshows how
this is done, defining a function creating the parser objec
calling transact on it and adding an entry to a map (whig
maps filename to function). Entries are kept in topologica
order, meaning an entry that depends on another has to
placed after the one it depends on.

Now we have registered the entry to the parser ar
defined the classes representing the data, we need to jm-
plement the parser functionality. Many pieces of this fung-}:
tionality have already been built for other log file parsers | jgiing 11: Additions in class parser entries (statis-
and are available in the Lexer class from which Parser is tic/include/parserentries.hpp)

a direct subclass. Listing3 and 13 show ftp.output and
ftp_log_linel respectively. The implementation from List-
ing 13looks very similar to its corresponding grammar in
Listing 8.

The last step is to implement the toSql function in eac
subclass of Parser. In case of fgg_linel this is quite
simple, since all except osstring goes into the same tab
Listing 14 shows a simplified version on how this is done.}

The entry point to the toSql function in ftputput is
the method transact, this can be seen in LislibgTrans-
act calls ftpoutput::toSql() which in turn calls the toSql()
functions of ftplog_linel and ftplog_line2 (Listing15).

Having implemented all these steps, the parser can
tested by:

Listing 10: Class definitions
clude/ftpoutput.hpp)

(statistic/in-

+
a -
cﬁass ParserEntries

it, static bool staticlnit ()
h{
al

be} :

‘d”s.tatic void ftp(Parser& parser{
ftp_output(parser).transact();

fmap.pushback(fpairt ("ftp.log”, ftp));

ftp_output :: ftp_output(Parser &parser)
: Parser(parser)
H

tpoutput =new tcp_output(parser);

11 = new ftp_log_-linel (parser);
le.12 = new ftp_log_line2 (parser);
skipLine ();

Listing 12: ftpoutput (statistic/src/ftputput.cpp)

bé%(isting Netsniff database. This will parse ftp.log and cre-
ate a database in test.db. The database can then be queried

logfileparser -sqlite test.db ftp.log in the Sqlite console, which is accessed by:

Where ftp.log is a log file generated by Netsniff, when
parsing FTP traffic and test.db is either a new or presdlite test.db

CAIA Technical Report 050204B February 2005 page 7 &f

ftp-log_linel:: ftp_log_linel (Parser &parser)
Parser(parser)

username = getString (); getSP ();
osstring = getQuotedString (); getSP ();
fileoperations = getlnteger (); getSP ();
error_fileoperations= getinteger (); getSP ();
unimplemented = getinteger (); getSP ();
error_responses = getinteger (); getSP ();
unknowncommands = getinteger (); getSP ();
anonymous = getlnteger (); getSP ();
login = getlnteger (); getSP ();
skipLine ();

Listing 13: ftplog_linel (statistic/src/ftpoutput.cpp)

long long ftp_log_linel::toSql(ong long pk)
{

ostringstream qs2;
gs2<< "insert.into_FTP_.values ("
<<pk <<,
<< ospk<<™,”
<< "' << username<< "’,”
<< fileoperations<< ",”
<< error_fileoperations<<”,”
<< unimplemented<< ",”
<< error.responses<<”,”
<< unknowncommands<< " ,”
<< anonymous<< ",”
<< login << ");";
Parser::toSqgl(gs2.str());
return O;

}

Listing 14: ftplog_linel
c/ftp_output.cpp)

toSql() (statistic/sr-

long long ftp_output::toSql()

long long tcp_-key
I1—>toSql(tcp.key);
I2—toSql(tcp.key);
return O;

tpoutput=>toSql ();

Listing 15: ftpoutput toSql() (statistic/src/ftputput.cpp)

X. CONCLUSION

In this technical report we described how to extend Net-

sniff with an additional packet level and application level

parser. We further described how to adopt the log file

[5] Network Sorcery. "FTP, File Transfer Protocol”, January 200tp:

Ilwww.networksorcery.com/enp/protocol/ftp.htm .

[6] OpenSSL Project. "HMAC” http://www.openssl.org/docs/

crypto/hmac.html
(71
(8]

Hipp, D. R. "SQLite”, October 2004http://www.sqlite.org

fabFORCE.net. "Fabulouse Force Database Tools, DBDesigner4”, Jan-
uary 2005.http://www.fabforce.net/dbdesigner4/ .

[9] Borland Software Corporation. "Kylix 3", January 2005ttp:/

www.borland.com/kylix/

[10] Brovienas, L.J. and Lopez-Cabanillas, P.

"kylixlibs”, January 2005.
http://kylixlibs.sourceforge.net/ .

XIl. APPENDIX
A. Installing DBDesigner4 under FreeBSD

DBDesigner4 can be obtained frol] [It works well on
linux_base-8-8.04. Other versions of linwbase haven't
been tested. DBDesigner4 is a Kyli8] [application and
depends on the Kylix libraries. They can be obtained
from [10]. You will probably only need libborgt. Copy

it to /compat/linux, chroot to /compat/linux and install the
package. For the Redhat based lirhese this looks like
this:

chroot /compat/linux bash
rom -Uhv --nodeps \
libborqt-6.9.0-1.i386.rpm

You can now unpack the DBDesigner4 tar ball ob-
tained from B] and start with ./DBDesigner4 from the di-
rectory.

B. Netsniff’s directory structure
ice/netsniff Netsniff's base directory.

ice/netsniff/src contains the header and source file
for Netsniff.

ice/netsniff/scripts scripts, which are used in gate-
way boxes, installed with Netsniff.

ice/netsniff/statistic contains the Netsniff log file
parser.

ice/netsniff/statistic/DOC documentation
database diagrams for the log file parser

ice/netsniff/statistic/srcsource code for the log file
parser.

and

parser tool and its database, in order to reflect the changes] .
made in Netsniff. This document hopefully serves as &- Checking out Netsniff from CVS
guide line for future improvements, additions and develNetsniff lives in the CVS repository on mordor. To check

opment on Netsniff.

REFERENCES

Keller U. and But J. "Netsniff - Design and Implementation Concepts”.
Technical Report 050204A, CAIA, February 2006ttp://caia.
swin.edu.au/reports/050204A/CAIA-TR050204A. pdf

(1]

[2] Centre for Advanced Internet ArchitectureI CE3 Inverted Capacity
Extended Engineering Experiment”, January 200tp://caia.

swin.edu.aulice/
[3]

[4] J. Postel and J.K. Reynolds. "File Transfer Protocel*c 0959, IETF,
October 1985http://www.ietf.org/rfc/rfc0959.txt .

"TCPDUMP / PCAP”, January 200%ittp://www.tcpdump.org

CAIA Technical Report 050204B

February 2005

it out from CVS you need an account on mordor and the
necessary rights on the /home/cvs/ice/. In order to check-
out Netsniff type in a (t)csh shell:

setenv SSH_RSH ssh
cvs -d :ext:mordor co ice/netsniff

This will checkout the HEAD of Netsniff from CVS.

If you are not doing development, you might want to con-
sider to get the latest tagged version instead.

page 8 &f

http://caia.swin.edu.au/reports/050204A/CAIA-TR 050204A.pdf
http://caia.swin.edu.au/reports/050204A/CAIA-TR 050204A.pdf
http://caia.swin.edu.au/ice/
http://caia.swin.edu.au/ice/
http://www.tcpdump.org
http://www.ietf.org/rfc/rfc0959.txt
http://www.networksorcery.com/enp/protocol/ftp.htm
http://www.networksorcery.com/enp/protocol/ftp.htm
http://www.openssl.org/docs/crypto/hmac.html
http://www.openssl.org/docs/crypto/hmac.html
http://www.sqlite.org
http://www.fabforce.net/dbdesigner4/
http://www.borland.com/kylix/
http://www.borland.com/kylix/
http://kylixlibs.sourceforge.net/

	Introduction
	Structure
	Adding a physical and link-layer protocol
	Constructor
	Destructor
	ParseStream
	Output

	Adding a Packet-Based Application Layer Protocol
	Constructor
	DumpFileName

	Example of Packet-Based Application Layer Protocol
	Output definition
	Extend Packet
	ARPPacket(u_char*, Packet*, bool)
	string DumpFileName()
	void Output(ostream)
	bool OmmitOutputFromParent()

	Construct a sub packet from another packet

	Adding a Stream-Based Application Layer Protocol
	ParseClient
	ParseServer
	Parsed
	DumpFileName
	Output
	Create

	Example of Stream-Based Application Layer Protocol
	FTP a simple example
	FTP parser implementation

	Anonymisation Tools
	IP Address Anonymisation
	Hashing of strings

	Adding to the logfileparser
	Extending the Database
	Adding a log file parser

	Conclusion
	References
	Appendix
	Installing DBDesigner4 under FreeBSD
	Netsniff's directory structure
	Checking out Netsniff from CVS

