
Measuring the Performance of NetSniff:
Testbed Design

Julie-Anne Bussiere,
*
 Jason But

Centre for Advanced Internet Architectures. Technical Report 050623A
Swinburne University of Technology

Melbourne, Australia
julie-anne.bussiere@laposte.net, jbut@swin.edu.au

Abstract- NetSniff is an IP traffic analysis tool currently
utilised in low traffic scenarios. We wish to explore the
possibility of expanding its use to higher traffic situations and
networks. This technical report explains our motivation for
doing so, and the design of the tesbed we will construct to
facilitate our determination of the processing performance of
NetSniff.

Keywords- NetSniff, performance, testbed

I. INTRODUCTION

NetSniff is a multi-network-layered real-time traffic
capture and analysis tool developed as part of the ICE

3

project being run out of the Center for Advanced
Internet Architectures (CAIA). The NetSniff tool is
currently deployed in low-bandwidth and low-traffic
scenarios. To gather more useful information, we would
like to deploy it within networks where the number of
aggregate users is higher. This paper explains why we
want to use NetSniff on a larger scale, and also discusses
the design of the testbed we will use to measure the
processing performance of NetSniff.

II. PURPOSE
The NetSniff tool facilitates capture and anlysis of IP

network traffic. Its design and implementation concepts
are described here [1]. The NetSniff tool is currently
deployed in low-traffic scenarios, and is performing
well. However, the levels of captured traffic is not
sufficient to properly model the widespread use of the
Internet and network applications. To do this, NetSniff
must be deployed in larger networks with more users
generating more traffic. An example would be
deployment in large corporate LANs such as the
Swinburne LAN or within ISP networks.

In this scenario, Netsniff – or indeed any network
monitoring device – is required to correctly capture,
parse and analyse both an increased amount of network
traffic and an increased number of multiple, concurrent
network flows. Unfortunately we are not able to simply
deploy NetSniff in a real network scenario due to
privacy concerns, as such we must build a testbed to
generate traffic specifically for the purpose of testing the
performance of NetSniff.

III.METHODOLOGY

Measuring NetSniff performance with high traffic
implies generating IP traffic. The following subsections
explain 2 different testbeds we considered.

A. Using virtual hosts on one real machine using RULE

The Remote Unix Lab Environment (RULE [2])
provides multiple virtual networked Unix hosts using
one real workstation, see figure 1. By creating several
virtual hosts on one machine, we can launch multiple
different and concurrent IP/TCP applications. A single
RULE enabled computer can easily manage up to 50
virtual hosts, each with a different IP address. This
testbed allows us to create real traffic with multiple
concurrent flows of different applications.

Fig.1Virtual hosts testbed

The server will be a separate FreeBSD machine
running HTTP, HTTPS, FTP, email (SMTP) and SSH
services. Each virtual host will be configured to access
these applications on the server to download / upload
data using commands like wget. A third computer
configured as an Ethernet bridge with FreeBSD will be
located between the server and the RULE host. This
machine will be running tcpdump [5], recording all
traffic into one tcpdump file.

The recorded tcpdump file will either be directly
processed by NetSniff, or be replayed across a network
using tcpreplay. When replaying traffic, we will need
two FreeBSD machines, one running tcpreplay to
generate the traffic and one running NetSniff to capture
and parse the generated traffic. The traffic replay speed
can be modified, allowing analysis of NetSniff
performance in higher bandwidth conditions. The
configuration and hardware of the FreeBSD machine

* Julie-Anne Bussiere performed this work while a visiting research assistant at CAIA in 2005

CAIA Technical Report 050623A June 2005 page 1 of 4

 ...

...

Single FreeBSD PC

 Server
(http, ftp,

ssh,
email..)

FreeBSD
machine
running
tcpdump

Virtual hosts

running NetSniff will be changed to determine ideal
traffic capture configuration.

B. Using Internet Traffic Generator Tool

Internet Traffic Generator [3] is a traffic generator
tool constituting an alternative to the previous testbed to
simplify setup and experiment duration. This tool is able
to generate traffic at high data rate and in a concurrent
fashion including TCP (Ipv4 and Ipv6) as well as UDP
traffic, ICMP, DNS, Telnet, VoIP (G.711, G.723, G.729,
Voice Activity Detection, Compressed RTP). However,
this tool cannot generate traffic of upper layer
applications (HTTP, E-mail). However, the critical
processing point in NetSniff is TCP streams and,
furthermore the applications generated by ITG belong to
common used applications which are interesting too.
The testbed is presented in figure 2.

Fig.2 Internet Traffic Generator testbed

ITG Sender generates a set of flows; it operates as a
multi-threaded application. One of the threads
implements the TSP protocol and drives the generation
process, while the others generate the traffic flows. The
manager allows remote control of traffic generation.
NetSniff will run and process directly the generated
traffic, but we can also run tcpdump instead and record
the traffic in a tcpdump file for later replaying.

C. Hardware and configuration of the capturing box

The “capturing box” represents the machine itself -
including RAM, network card and the clock speed - in
addition to NetSniff software. The performance testing
will take in account NetSniff software's implementation
as well as the machine's hardware the most convenient
to run NetSniff in high traffic circumstances. In this way
we will run NetSniff on different machines with the
same traffic to compare performance depending on
Hardware, and we will run NetSniff using the same
machine with different traffic models to point out
software implementation performance.

IV. RULE BASED TESTBED

In the first instance we will measure the performance
of NetSniff using a RULE based testbed. The traffic
captured in this scenario is generated by real networked
applications running on a real network. As such, this
traffic is more likely to conform to real-world traffic
than that from the traffic generator. It may be possible
to evaluate NetSniff performance using the traffic
generator at a later stage.

Once the testbed is built, we need to configure the
virtual jail hosts and the server to allow data exchange
for each application. This is described in the following
sections. Once configured, a shell script main.sh is
written, this script will launch a series of commands in a
loop. These commands will continuously use different
applications to retrieve (or send) data from(to) the
server. It is possible to execute the shell script at the
same time from each jail host using the command "at" as
jail root:

> at -f main.sh -t time

where time is in the format MMddhhmm.ss .

A. Enabling SSH

On the server, the SSH daemon is enabled by
removing the comment character # on the corresponding
line from the /etc/inetd.conf file. No specific
configuration needs to be done on the jail hosts.

To allow the automatical usage of the ssh command
in a shell script, we need to avoid the password prompt.
To be connected directly from the jail host (as root or as
user, depending on future needs) run the command:

> ssh-keygen -t rsa

This will first ask you for the directory to store the
key file, type enter to keep the default path. For the
passphrase, choose an empty one by typing enter twice.
Now the key is generated, copy the public key in the
host you want to ssh (the server), knowing the username
and the password. From the jail host:

>cat ~/.ssh/id_rsa.pub | ssh
[server] "cat >>
~/.ssh/authorized_keys"

In the shell script, the command line to use ssh is:

>ssh -n [serverhost] [command]

The scp command can also be used directly :

>scp [filetocopy]

 [serverhost:directorytocopy]

B. Enabling FTP

On the server, the FTP deamon is enabled by
removing the comment character # on the corresponding
line from the /etc/inetd.conf file. No specific
configuration needs to be done on the jail hosts.

To exchange files with ftp, we use a shell script
defined as follows.

#File autoftp.sh
#!/bin/sh
HOST='serverhost'
USER='username'
PWD='serverpwd'
ftp -n $HOST<<END_SCRIPT
 quote USER $USER
 quote PASS $PWD
 get myfile1
 put myfile2

CAIA Technical Report 050623A June 2005 page 2 of 4

MANAGER

Windows/Linux

Windows/Linux Windows/Linux

ITG
Sender

ITG
Receiver

FreeBSD

NetSniff

 quit
 END_SCRIPT
#end autoftp.sh
 This shell script is then executed from the main shell

script with the command line sh autoftp.sh .

C. Enabling HTTP and HTTPS

On the server, we install Apache [6] with mod_ssl [4]
and OpenSSL [7]. On the jail hosts, we install the wget
package which also requires the packages gettext and
libiconv.

The server is launched as root using:

#/usr/loacal/apache/bin/apachectl
startssl

To download an html page from the server we can
issue the command:

wget http://serverhost/mypage.html

To use ssl encryption, we need to specify an option
which indicates not to check the certificate (the
certificate created is not signed and then appears
insecure).

wget https://serverhost/mypage.html
–no-check-certificate

D. Enabling SMTP

On the server, the sendmail daemon is enabled by
adding the following line to /etc/rc.conf

sendmail_enable="YES'

Mail can be sent using the telnet application to
connect to the SMTP server. An easy way to
automatically use telnet in a script is with Perl. Install
the Perl5 package on each jail host. The Net::telnet class
script is required, then copy the file telnet.pm in .../
perl5/site_perl/Net, creating the directory /Net.

The perl script to send mail is:

#File automail.pl
#!/usr/bin/perl -w
use Net::telnet;
$hostname= "serverhost";
$telnet = new Net::Telnet

(Timeout=>10);
$telnet->open(Host=> $hostname,

Port=> 25);
$telnet->waitfor('/$/i');
$telnet->print('helo

rulex.caia.swin.edu.au');
$telnet->waitfor('/$/i');
$telnet->print('mail from:

user@rulex.caia.swin.edu.au');
$telnet->waitfor('/$/i');
$telnet->print('rcpt to:

user@serverhost');
$telnet->waitfor('/$/i');
$telnet->print('data');

$telnet->waitfor('/$/i');
$telnet->print('subject: whatever);
$telnet->waitfor('/$/i');
$telnet->print('my message');
$telnet->waitfor('/$/i');
$telnet->print('.');
$telnet->waitfor('/EOF $/i');
$telnet->cmd('quit');
#end of automail.pl
This Perl script is then executed from the main shell

script with the command line perl automail.pl .

E. Other requirements

The server and the virtual machines must belong to
the same subnetwork (192.108.0.x). To change the
network configuration on the server, modifications are
needed in the /etc/resolv.conf and /etc/rc.conf files. In
resolv.conf, comment the existing lines and add :

nameserver 192.168.0.y

y is a number between 1 and 255, different from all
the numbers already used by the machines in our
network (jails and server). In rc.conf, comment out the
pre-existing defaultrouter and ifconfig lines and add:

defaultrouter 192.168.0.y

ifconfig_em0="inet 192.168.0.s
netmask 255.255.255.0"

y must have the same value than previously, and s is
the number associated with the indivudual machine
being configured.

The files to be transferred during the experiment (ftp
or ssh) are created with a C program. It creates a file of
the specified size filled with random characters. To
avoid the use of unnecessary space on the disk, the
transferred files will be deleted immediately after the
download. Some html pages of different sizes are be
created.

In /etc/hosts file, the different jail host names have to
be registered adding the following line for each:

192.168.0.x
rulex.caia.swin.edu.au user

V.MAIN SHEEL SCRIPT

The repetitive actions performed by the main shell
script on each jail host are:

1. http: download a html page of 1.68 KB

2. http: download a html page of 3.2 KB

3. ftp: download 2 files with ftp, respectively of 10 KB
and 200 KB, upload a 1MB file

4. https: download a html page of 1.68 KB with ssl

5. smtp: send a mail of 1KB

6. ssh/scp: ssh twice, executing a short command,
upload a file of 2 MB with scp, and ssh to remove
this file on the server.

7. http: download a html page of 3.22 KB

CAIA Technical Report 050623A June 2005 page 3 of 4

8. http: download a html page of 68.5 KB

9. ftp: download 2 files with ftp, respectively of 2 MB
and 2 KB, upload a 500 KB file

10.https: download a html page of 3.22 KB with ssl

11.smtp: send a mail of 2.3 KB

12.ssh/scp: ssh twice, executing a short command and
download a file of 1.4 MB with scp

VI.CONCLUSION AND FUTURE WORK

For the needs of NetSniff performance
measurements, a testbed to generate IP traffic has been
designed. This paper explains the configuration and
software installation requirements for automating in a
shell script the generation of ssh, ftp, http, https and
smtp traffic over a network of virtual jail hosts. Future

research will involve building the aformentioned testbed
and using it to generate conclusions on the processing
performance of NetSniff under both raw processing and
live capture situation.

REFERENCES

[1] U. Keller, J. But, "Netsniff - Design and Implementation Concepts,"
(pdf) CAIA Technical Report 050204A, February 2005

[2] G. Armitage, "Maximising Student Exposure to Networking using
FreeBSD virtual hosts", (pdf), July 2003,
http://portal.acm.org/citation.cfm?doid=956993.957010

[3] Internet Traffic Generator, http://www.grid.unina.it/software/ITG/ , ,
accessed June 2005

[4] Apache SSL Module, http://www.modssl.org, , accessed June 2005

[5] http://www.tcpdump.or g

[6] The Apache Web Server, http://www.apache.org, accessed June 2005

[7] OpenSSL Project, http://www.openssl.org, accessed June 2005

[8] Perl Scripting Language, http://www.perl.com, accessed June 2005

CAIA Technical Report 050623A June 2005 page 4 of 4

