
CAIA Technical Report 050928A December 2005 page 1 of 11

Towards a General Model of First Person Shooter
Game Traffic

Philip A. Branch, Grenville J. Armitage
Centre for Advanced Internet Architectures. Technical Report 050928A

Swinburne University of Technology
Melbourne, Australia

{ pbranch, garmitage} @swin.edu.au

Abstract- Although the past few years have seen significant,

empirically-based activity in modelling First Person Shooter
(FPS) game traffic, there has been only limited work published
that explores the underlying reasons for observed FPS traffic
characteristics. As a result the generality and scalability of these
empirical models is open to question. In this paper we
demonstrate how a useful predictive model for FPS traffic
patterns can be derived from a number of generic multiplayer
game-play requirements. We begin by describing a possible
theoretical basis for modelling the message rates and message
sizes between server and clients in FPS games. Based on this
model we make predictions as to the characteristics of FPS game
traffic and then compare the predictions with traffic statistics
collected from Quake 3 and Unreal Tournament game trials.
Agreement between the predictions from our theoretical model
and the statistics from the game trials is very good.

Keywords- First Person Shooter Games, Teletraffic Analysis,
Traffic Engineering

I. INTRODUCTION

Modelling traffic generated by Internet based
multiplayer computer games has attracted a great deal of
attention in the past few years [4, 5, 7-10, 13-15, 21].
This attention is a consequence of the size of the
computer game industry and its growth. It is little
appreciated just how large the computer game industry is
and how quickly it is growing [1]. Although most
industry revenue is from non-networked console games,
a significant and rapidly growing part is from online,
interactive computer games [16].

In an online interactive game, multiple players at
diverse geographical locations interact with each other
within a virtual space in real time. In First Person
Shooter (FPS) games (one of the most popular genres),
the interaction is usually some form of virtual armed
combat [12].

As the number of people playing Internet based
games increases, it is becoming important that Internet
service providers, game server operators and game
software developers understand the teletraffic generated
by Internet based games. Of particular importance to
these groups of people are questions as to how the traffic
generated by these games increases as the number of
players increases, and how this traffic affects and is
affected by, other traffic. To answer questions of this
nature simulation and analysis are typically used to
model the proposed system before deployment. The

simulation or analytical model allows questions
involving server and network capacity, and overall
system performance, to be answered. However, for this
to be effective, good traffic models are needed [11]. It is
necessary to understand how the traffic varies as the
number of users increases, what happens to delay and
delay variation when the traffic is multiplexed with other
types of traffic and what link and server capacities are
necessary to meet a given grade of service. In the same
way that web and other traffic has been analysed and
modeled, and the models used to predict the
consequences for the Internet, it is necessary to analyse
game traffic and produce models that can also be used in
the same way [6].

This need has resulted in a great deal of work being
done in the past few years in modelling game traffic.
Traffic models have been developed for popular games
such as Quake 3, HalfLife, Counter-Strike and Unreal
Tournament [4, 5, 7-10, 13-15]. However, a weakness of
this work is that it has been entirely empirical. Traffic
model development has involved constructing
probability models for the games by examining packet
traces and identifying the most appropriate statistical
distribution to describe the trace. There have been only
the most limited attempts made to understand why the
traffic has its particular characteristics. While the
empirical models are useful, they are open to criticism
regarding their generality and reliability. We may
reasonably question whether these models can be
generalised to predict the behaviour of other FPS games
or scaled to predict the behavior of games with large
numbers of players.

In considering the generality of traffic models, it is
intriguing to note that the traffic generated by Quake 3,
HalfLife, Counterstrike and Unreal Tournament (all
popular FPS Internet games) has some interesting
similarities. In particular the probability density
functions for packet size and interarrival times have a
similar shape [5, 10, 14, 15]. The similarity between
Quake 3, HalfLife and Counterstrike could be explained
by their common lineage, but there is little published
evidence to link Unreal Tournament’s network engine
with that of Quake 3. However, it was possible that
respective developers implemented similar ideas given
the design constraints of highly interactive games
operating over low bandwidth network links.

CAIA Technical Report 050928A December 2005 page 2 of 11

Scalability of the models is the other important issue.
For FPS games, detailed game statistics are usually
obtained in controlled trials with only a small number of
players (typically less than ten) [13-15, 20]. An
important question is whether these models can be
extrapolated to much larger numbers of players and if so,
how?

In this paper we begin addressing these two issues
and in the process, develop a general basis for modelling
game traffic. We begin by proposing some simple
assumptions of the goals that developers of a FPS
Internet game would probably build into their game
protocols, develop a simple model of game traffic based
on these assumptions, see what traffic profiles the model
predicts and then compare the predictions with traffic
statistics collected from real Quake 3 and Unreal
Tournament game trials.

In attempting to understand traffic generated by FPS
games, we need to look at general characteristics of
game statistics rather than simple statistics such as mean
and variance. So, in this paper, we are more interested in
probability distributions of important game traffic
statistics than in the actual statistics themselves. In
particular we are interested in the rates and sizes of
messages transmitted to and from the game server and
game clients and whether we can predict, in general
terms, common features of these statistics for FPS
games, and how these statistics vary as the number of
players varies.

We are also interested in broad general characteristics
of FPS games. Modern FPS games use quite
sophisticated techniques to minimize undesirable
network effects [18]. In this paper we make simplifying
assumptions which are only approximately correct, but
which make analysis tractable.

The rest of the paper is structured as follows. In
Section 2 we outline our assumptions and develop a
traffic model based on them. In Section 3 we consider
packet interarrival times both to and from the server. In
Section 4 we model packet lengths from the client to the
server. In Section 5 we model packet lengths from the
server to the client for two, four, six and eight player
games. We see that there is a simple relation between
this traffic and the client to server packet length. Section
6 is our conclusion.

In Sections 3, 4 and 5 we compare predictions from
our model with actual traffic statistics of Quake 3 and
Unreal Tournament from controlled laboratory trials. It
is worth noting that agreement between our model and
the traffic statistics is very good.

II. MODEL OF FPS GAME TRAFFIC PROTOCOLS

A. Goals of FPS Protocol Design

As part of the development of a networked FPS
game, the designers need to develop a communications
protocol for the exchange of information between
players of the game. Its purpose is to specify how
information about the state of the game (player
locations, current actions, scores, battles and so on) is to
be communicated to players. This protocol is distinct

from the underlying transport protocol (usually UDP)
and should not be confused with it. In this section we
attempt to identify the main design objectives of such a
protocol.

Most FPS games are server based. An ISP or a game
enthusiast runs game server software on an Internet
attached machine and invites other players to participate
in games running on that server. Players have client
software which they also run on an Internet attached
device, typically a personal computer. The client
software is responsible for reporting the player’s actions
to the server. The server processes the actions, along
with that of other players, and propagates the result (the
game-state) to the clients. The client software then uses
the result to modify the display seen on the player’s
computer. So for example, if a player uses a grenade
launcher to attack another player, the server decides
what the consequences of the attack are and transmits
details to the clients. Such details might include the
trajectory of the grenade, followed by an explosion and
the possible demise of the other player. For the game to
operate in real-time and to provide an immersive
experience, game-state needs to be distributed at a high
rate.

Our first assumption is that in designing a protocol to
support such games, a key goal is to minimize traffic
across the Internet. Game server operators want as many
people as possible to play, including people who have
limited bandwidth in accessing the Internet. By
minimizing the bandwidth needed for communication
between the client and the server, a much larger game
player population can be reached. Also, game server
operators want to minimize costs. One of their key costs
is bandwidth. By keeping traffic to a minimum, cost is
reduced. Finally, it is important that the game is fair to
all players. If large amounts of data are to be shipped
between the client and server, then players on high
bandwidth connections will have a significant advantage
over players on low bandwidth connections.

Our second assumption is that the protocol will be
designed with fairness to all players in mind. To
maintain fairness it is important to ensure that all clients
have as accurate and timely a copy of the game-state as
possible. Since the server contains the definitive copy of
the game-state, it needs to distribute it frequently to all
players. Also, it needs to distribute it to all players at
much the same time interval. To illustrate why this is
necessary, consider the case of one player who receives
a copy of the game-state every 500 ms and another
player who receives it every 50 ms. In 500 ms the
second player could engage the first in combat, defeat
them, and retreat to safety before the first player even
knew they were under attack. The second player has an
unfair advantage over the first. Consequently, the rate at
which the game-state is received by each client should
be frequent and (as much as possible) the same. The
same issue of fairness requires that clients report their
state to the server at a frequent rate so that it can be
propagated to all other players, so that they have an
accurate picture of the state of the game.

CAIA Technical Report 050928A December 2005 page 3 of 11

B. Consequences of FPS Protocol Assumptions

The first assumption leads us to expect that game
traffic will be largely independent of the client. There
may be different versions of client software but the
protocol used to communicate between the server and
client (and vice-versa) should be independent of the
client system. In particular it should deal in actions
rather than the detailed delivery of complex, client
dependent graphics. In general, the client will transmit
short code-words specifying what the client has done.
For example a client will transmit a code to the server
meaning “Player has jumped left” rather than a detailed
video sequence of the player jumping left. The server
will then propagate similar short coded messages to
other players within that player’s field-of-view
specifying that this client has jumped left, as well as the
consequences of the action. For example, rather than
transmitting a video sequence showing the results of a
player “jumping left” (such as falling off a cliff, or being
shot by another player) the consequences will be coded
in as simple a manner as possible and propagated to all
clients who have that player in their field-of-view. The
client machines will then interpret the code and generate
appropriate graphics on the client computer.

If we consider the consequences for client to server
teletraffic, we would expect the length of the messages
from the client to the server to span a small range of
values. The messages would encode the action of the
client. Typically, there is a limited number of actions
that each client can perform. For example in Quake 3 the
number of actions is less than 20 [12]. These include
jump left, jump right, turn around, take the object lying
on the ground and other similar, simple actions.
Consequently, message length from the client to the
server will be limited to a small range of values.

A consequence of the second assumption is that we
would expect the interarrival time of messages from the
server to the client to be, as near as possible, fixed. That
is, we would expect to see the server propagate game-
state information at roughly a constant rate, leading to an
approximately constant message interarrival time.

We would also expect the interarrival time of client
to server packets to be similarly fixed for the same
reason.

The game-state transmitted from the server to the
clients will consist of the state of each player and any
possible interactions (battles) between them. We would
expect interactions to occur less often than changes in
state of individual players. Where there are interactions
we would expect the server to need to transmit more
information than if there are no interactions.

Since the game-state is propagated to all players, and
since each player’s actions affect the state of the game,
then we would expect the average message length from
the server to the client to increase as the number of
players increase.

We now use these observations to propose traffic
models for each of these packet statistics and compare
them with traffic statistics captured from game trials
conducted by us in 2003 [15]. The traffic traces are from
the previously popular Internet game Quake 3. Quake 3

is a FPS game where players explore a virtual world,
collect useful objects and engage in combat with other
players [12]. In the trials we set up a server and clients
within a laboratory environment. We ran games for set
lengths of time using the same game environment with a
number of players of different abilities. We collected
statistics of packet lengths and interarrival times to and
from the game server at the game server machine. Full
details can be found in [15].

III. MESSAGE RATES

A. Client to Server Message Rate

The server needs to have as accurate information as
possible of the location and current action within the
game space of each player. This will mean frequent
updates from the client to the server of each player’s
location. The additional requirement of fairness means
that updates of client location and activity should be sent
by each client at some minimum rate. If one client
reports their player’s position less frequently than other
clients, then there is a potentially unfair advantage for
that player. During the time between update messages to
the server the player might be able to move large
distances, attack other players and then retreat to safety.
Fairness dictates that clients should report their location
and action at a frequent rate with the possible exception
of when the client is inactive.

Consequently we would expect the Probability
Density Function (PDF) of the interarrival time of client
to server messages to be approximated by an impulse
function. In Figure 1 we show the statistics of the
interarrival times from the client to the server for Quake
3. Clearly this is not an impulse. Nevertheless, it is a
reasonable approximation to one. Empirical models have
modeled this distribution with both an impulse and an
impulse modified by an exponential distribution [15].

It is worth noting that client to server packet rate is
usually configurable by either the client or the server but
with a minimum interarrival time. In Quake 3 the default
interarrival time is 20 milliseconds but is configurable to
a maximum of 50 milliseconds. Generally games will
allow the client to report the client state more frequently
than the minimum but will not allow the client to report
less frequently than some default [12].

0

0.02

0.04

0.06

0.08

0.1

0.12

0 20 40 60 80 100 120

milliseconds

Figure 1. Probability Density Function of Client to server interarrival times
measured at the server for Quake 3

CAIA Technical Report 050928A December 2005 page 4 of 11

0

0.02

0.04

0.06

0.08

0.1

0.12

0 50 100 150 200 250

Packet interarrival time (milliseconds)

Figure 2. Probability Density Function of Server to client message
interarrival times measured at the server for Quake3

B. Server to Client Message Rate

Again, applying the fairness assumption we would
expect the interarrival time between messages (and
hence the message rate) to be close to constant. For the
game to be fair to all players the game-state needs to be
propagated to all players frequently and (as nearly as
possible) at the same rate. Consequently, we would
expect the PDF of the server to client message
interarrival time to be approximately an impulse
function. Figure 2 shows the interarrival time for client
to server packets for Quake 3. We see that it is quite a
reasonable approximation to an impulse function.
Empirical modeling has suggested that this traffic can be
modeled with either an impulse or a Laplace distribution
[15].

IV. CLIENT TO SERVER MESSAGE LENGTH

We can expect that client to server messages will
usually fall into a few different categories, with a few
different parameters. The actions that a player can
perform, and hence the information that needs to be
transmitted back to the server about those actions, will
usually be quite limited. It will include information as to
where the player is in the game world, how fast they are
moving and what actions they are performing. Actions
might include “Jump to the left”, “Pick up medical kit”,
“Use flame-thrower” and similar. Consequently, we
would expect only a few different message types to be
sent to the server. Each of these would have a limited
range of parameters. As a result we would expect a
limited range of message sizes. A further observation is
that some of these actions (such as run forward) will
occur more frequently than others (such as launch
grenade).

Using these observations we propose that the PDF of
the client to server message lengths could be modeled by
a number of impulse functions spanning a short interval
where each impulse function represents a commonly
occurring set of actions. We see that the PDF for Quake
3 client to server traffic shown in Figure 3 matches this
very well, with a number of impulse functions
distributed between 50 and 70 bytes.

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0 20 40 60 80 100 120

Packet length (bytes)

Figure 3. Probability Density Function of Client to server message length
measured at the server for Quake 3

V.SERVER TO CLIENT MESSAGE LENGTH

A. Two Player Game

0

0.005

0.01

0.015

0.02

0.025

0.03

0 50 100 150 200 250 300 350

bytes

Figure 4. Empirically obtained PDF of the two-player game message length
for Quake 3 during active game-play

We now consider server to client packet lengths. We
can make a qualitative prediction as to the general shape
of the PDF for multi-player games. Propagating details
about game-state where players have interacted (shot at
each other) will require more data than where players
have not interacted. Interactions will not occur all the
time. Consequently, we can expect longer messages to
occur less frequently than shorter messages, giving rise
to a negatively skewed distribution.

In Figure 4 we have plotted the empirically obtained
PDF for Quake 3 of the two-player game packet-length
from the server to the client. We see that, as predicted, it
is a skewed distribution.

We now construct a theoretical model of packet
length for two player games. To do so, we need to make
some assumptions as to player behaviour and how the
game is constructed.

CAIA Technical Report 050928A December 2005 page 5 of 11

First we assume that each player generates messages
whose PDF is similar to that shown in Figure 3.

Second we assume that the traffic generated by each
player is independent of other players. That is, we are
assuming a homogeneous player population. Although
this is obviously open to challenge, we can claim it as a
starting point for our analysis and modify it in further
refinements.

Third, we assume that the server holds the definitive
copy of the game. That is, a player may attempt to carry
out an action, but that action (for a variety of reasons)
may not succeed. Consequently, we would expect the
server to send back to each client information as to what
actions the server has recorded the client as having
carried out since the last update. We assume this can be
modeled by a s PDF similar to that shown in Figure 3.

Fourth we assume that information is sent to each
player about the other player’s most recent action.
Obviously for players to interact they need to know
something about the other player’s location and
behaviour. However, the rise of so-called “wall hacks”
has meant that modern FPS games no longer send full
details of other player’s behaviour to all players. (A “wall
hack” occurs where a player cheats by using non-
standard client software to interrogate the full game-state
to identify the location of players who should otherwise
be invisible. An example is where a player is hiding
behind a closed door [2]). Consequently, modern FPS
games analyse each player’s field-of-view and transmit
only information that the player is legitimately able to
use.

Using these assumptions we can construct a model of
server to client packet length for the two player game.
We propose that the variable length part of packets from
the server to the client are made up of three code-words:
a code-word describing the action of the first player, a
code-word describing the action of the second player,
and a code-word generated by the server describing
consequences of player actions, such as explosions,
player health points and similar.

The first code-word describes the success or
otherwise of the actions the player has transmitted to the
server since the server last sent it a copy of the game-
state. In modern FPS games there is not necessarily a
one-to-one correspondence between the number of
packets sent by the client to the server and the server to
the client. The default in Quake 3 is for the client to send
an update every 20 milliseconds and for the server to
send an update every 50 milliseconds. Consequently, the
client needs to be informed of whether or not its
requested actions have succeeded. We propose modeling
this with the PDF of the client to server traffic.

The second code-word describes the actions of the
other player. Again, we assume that an approximation to
the PDF of length of this code-word is the client to
server PDF. However, the effect of limiting the field-of-
view of the players will be to negatively skew this PDF.
Depending on the game map, each player will, at times,
receive little or no information about the other player.
Consequently, the code-word describing the other
player’s action will have an average shorter length than

the code-word describing the actions sent to the server
by the other client. In other words, the distribution will
be skewed. However, as a simplifying assumption we
ignore this skewing and assume we can model the
information in the second code-word by the same PDF
used to model the first code-word. A consequence of this
assumption is that our model may under-estimate the
number of small packets and over-estimate the number
of long packets.

Finally there is the server generated code-word
specifying the consequences of player actions. This
would include such events as explosions, grenade
trajectories and similar. We would expect the length of
code-words describing events generated by the server as
a result of player actions to have a negatively skewed
distribution for the following reasons. The first is as a
consequence of efficient coding. If events require the
same amount of information to describe then, when an
efficient coding scheme is used, the most commonly
occurring events are given the shortest code-word,
naturally causing a skewed distribution [19]. Also,
events requiring large amounts of information to report
to the client (such as explosions) occur less frequently
than events requiring little information to report (such as
changes in player position). Consequently, we propose
that the code-word lengths generated by the server as a
consequence of player actions can be modeled with a
skewed distribution. In the analysis that follows we will
model the server generated code-word lengths with an
exponential distribution.

Before we begin the analysis we need to note that all
packets to and from the server have a fixed header length
of approximately 48 bytes. In the analysis that follows
we ignore this header.

We formalize our analysis as follows. Denote the
random variable describing the length of the variable
part of the message length from the server to the client
for a two-person game by X. We propose that X is the
sum of the lengths of three code-words: C1, C2 and C3.
C1 is the code-word containing the information as to
what the server has determined is the client’s action
since the last update from the server. C2 contains
information as to what the other client has done since the
last update. C3 is the code-word describing the server
generated actions.

Denote the random variable describing the variable
part of the client to server message length by V. The
PDF of V is empirically derived and, for the Quake 3
trials, is shown in Figure 3. We use V to describe the
length of both C1 and C2. Denote the random variable
describing the length of C3 by Z. Using the assumptions
outlined above, it follows that:

X = V+V+Z (1)

The PDF of the sum of continuous random variables
is given by their convolution [3]. If we denote the PDF
of X, V and Z by fX, fV and fZ respectively, then the PDF
of X is:

CAIA Technical Report 050928A December 2005 page 6 of 11

ZVVX ffff ∗∗= (2)

where * denotes convolution.

We can also identify some other relationships
between X and Z. In particular, since the expectation of
the sum of random variables is the sum of expectation of
each random variable [3], then from equation 1 the
expected value of X will be related to V and Z by

ZVX += 2 (3)

We have proposed modelling the PDF of Z with an
exponential distribution. The exponential distribution is
defined by the single parameter λ where 1/λ is the
expected value of the random variable [3]. That is:

VXZ 2
1 −==
λ

 (4)

So, in summary, we propose that the variable part of
the two player server to client PDF is made up of three
code-words: C1 comprising the server’s determination of
what the recipient player has done since the last update,
C2 comprising information the recipient player is
allowed to know of the actions of the other player since
the last update, and C3 generated by the server and
comprising consequences of actions and interactions
between the two players. We assume that the length of
C1 can be modeled by V. We assume that the length of
C2 can also be modeled by V. But in making this
assumption we have assumed that field-of-view
restrictions have a negligible effect on the length of C2.
Finally we assume that the length of C3 can be
approximated by a negative exponential of the form:

t
Z ef λλ −= (5)

In the next two sections we compare the predictions
derived from this analysis with Quake 3 and Unreal
Tournament statistics.

In the next two sections we compare the predictions
derived from this analysis with Quake 3 and Unreal
Tournament statistics.

B. Modeling the Quake 3 Two Player Game

We now use the analysis in the previous section to
predict the PDF of the Quake 3 two player game.

We need to specify the value of λ to use in this
analysis. If we know the mean value of the variable part
of the packet length for the two player game (that is, X)
then we can use it to determine Z through equation 4. In
the Quake 3 trials X is approximately 47 bytes and V
is approximately 11 bytes. Consequently, using equation
4, Z is approximately 25 bytes. So the value of l that we
will use is 1/25.

At first glance it might appear that we are assuming
the result (X) that we are setting out to find. However,
we are not doing so. Our theoretical model proposes that

an exponential distribution might be suitable for
modelling Z. We have made use of equation 1 to attempt
to determine what exponential distribution might be
suitable. Also, we have made no assumptions regarding
the PDF of X, the determination of which is our main
goal.

So we propose that:

25

25/t

Z

e
f

−

= (6)

Using equation 2 we can now determine values for fX.
The results are shown in Figure 5 along with the
empirically derived PDF (denoted by EPDF).

The agreement between the PDF derived from our
theoretical modelling and the captured statistics is very
good. We have made a number of simplifying
assumptions in this analysis about player behaviour and
the consequences of field-of-view restrictions. Even so
we see good agreement between our model and the
empirically derived model for Quake 3. This gives us
some confidence that our assumptions are reasonable.
However, it is interesting to note that the theoretical
model predicts more longer packets and fewer shorter
packets than were observed in the empirical model. As
noted earlier this is consistent with our approximating
the PDF of the length of C2 with V. Taking into account
the field-of-view constraints that modern FPS games
impose, it might be more accurate to model the length of
C2 with a skewed version of V. However, the difference
is also consistent with the Exponential distribution
overestimating the length of C3. Modeling the length of
the code-words C1, C2 and C3 is an area for future
research.

In the empirically obtained data, there is a large spike
at 48 bytes. This appears to be caused by a keep-alive
message transmitted when players become idle. Since
we are interested in the traffic generated by active
periods of play, these are not included in the plots.

We can quantify how good a match fx and EPDF are
by using the Kolmogorov-Smirnov test (K-S). The K-S
test is used to test whether two sample data sets come
from the same distribution, without the distribution
needing to be specified [17]. The range of packet sizes
used in the analysis is 1 to 300.

Table 1. K-S test for two player games

Maximum
value of

|F0(X) - Sn(X)|

Maximum value of |F0(X) - Sn(X)| for
level of significance

 0.20 0.15

0.0545 0.0617 0.0658

From the test we see that we can accept the
hypothesis that the predicted and observed statistics are
from the same distribution to a very high level of
significance.

CAIA Technical Report 050928A December 2005 page 7 of 11

0

0.005

0.01

0.015

0.02

0.025

0.03

0 50 100 150 200 250 300 350

Packet length (bytes)

fx

EPDF

Figure 5. Predicted (fx) and observed (EPDF) two-player game message
length PDFs for Quake 3 during active game-play

C.Modeling the Unreal Tournament Two Player Game

We now compare the Unreal Tournament statistics
from our game trials with predictions from the above
analysis. First we need to know V. From the Unreal
Tournament game trials, the PDF of V is shown in
Figure 6.

0

0.05

0.1

0.15

0.2

0.25

0 20 40 60 80 100 120

Packet length (bytes)

Figure 6. Probability Density Function of Client to server message length
measured at the server for Unreal Tournament

The next step is to obtain the average packet length

for the two player game. In this case it is 42.
Consequently, we model the length of the server
generated code word by

42

42/t

Z

e
f

−

= (7)

Using the same analysis as before the empirically
derived (EPDF) and predicted (fx) PDFs are shown in
Figure 7.

0

0.005

0.01

0.015

0.02

0.025

0.03

0 100 200 300 400

Packet length (bytes)

EPDF

fx

Figure 7. Predicted (fx) and observed (EPDF) two-player game message
length PDFs for Unreal Tournament during active game-play

Once again we see good agreement between the
empirically derived and predicted models. However,
there is clearly much more complexity in the empirical
data for Unreal Tournament than there is for Quake 3.
We can determine how good a match the two
distributions are by using the K-S test. Details of the test
are shown in Table 2. For this data set the sample size is
500.

From the K-S test we can see that we have excellent
agreement between the two distributions.

Table 2. K-S test for Unreal Tournament two player games

Maximum
value of

|F0(X) - Sn(X)|

Maximum value of F0(X) - Sn(X) for
level of significance

 0.20 0.15

0.0333 0.0478 0.05098

D.Games With More Than Two Players

We now present an analysis of packet length for
games with more than two players. To carry out this
analysis we use the same assumptions we made in
analyzing the two-player game. In particular, we assume
that player behaviour is homogeneous in that player
actions can be described by the same random variable V,
regardless of the number of players.

Since game-state is made up of the aggregate
behaviour of players and code-words generated by the
server as a consequence of player behaviour, we would
expect the average message length to increase as the
number of players increases. If we assume players are
homogenous in their game-play then as the number of
players increases the information that makes up the
game-state can also be expected to increase linearly.
Figure 8 shows the mean packet length for two, four, six
and eight player games derived from statistics collected

CAIA Technical Report 050928A December 2005 page 8 of 11

from our Quake 3 trials. As predicted we see that the
mean of the packet length increases linearly.

0
20
40
60
80

100
120
140
160
180

2 players 4 players 6 players 8 players

Figure 8. Mean packet length Quake 3

We can also predict the PDF of packet length for
larger numbers of players. We know the PDF of a two
player game. We now use it to predict the PDF of games
with more than two players. The PDF of a two player
game gives information about the behavior of each
player in isolation and of their interactions. If we assume
that most interactions (battles) remain between two
players and occur at approximately the same rate for
each player regardless of the individual player and the
number of players (our homogeneity assumption), then
we can construct a probability model of games with
more than two players in the same way that we
constructed a probability model for the two player game.
Again we denote the variable part of the message length
of a two player game by the random variable X and its
PDF by fX . As before we assume player behavior
homogeneity. In particular, we assume that each player
engages in the same number of battles regardless of the
number of players, and so contributes at the same rate to
server generated code-words. Using these assumptions,
the message length of a four player game will be X + X,
that of a six player game X + X + X and that of an eight
player game X + X + X + X and so on. Also, since the
PDF of the sum of two or more random variables is the
convolution of their PDFs, the PDF of four, six and eight
player games is respectively:

XXXX ffff *gameplayer four == + (8)

XXXXXX fffff **gameplayer six == ++ (9)

XXXXXXXX ffffff ∗∗∗== +++rgameeightplaye (10)

where * denotes convolution.

Figure 9, Figure 10 and Figure 11 show the predicted
(fx) and empirically derived PDFs (EPDF) of four, six
and eight player games respectively from the Quake 3
trials, while Figure 12 shows the same results for the
four player Unreal Tournament game. Once again we
see excellent agreement between the predictions of our
model and the statistics collected from the Quake 3 and
Unreal Tournament trials.

0

0.005

0.01

0.015

0.02

0.025

0 50 100 150 200 250 300 350

Packet length (bytes)

fx

EPDF

Figure 9. Predicted (fx) and observed (EPDF) four-player game message
length PDFs for Quake 3 during active game-play

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0 100 200 300 400 500

Packet length (bytes)

fx

EPDF

Figure 10. Predicted (fx) and observed (EPDF) six-player game message
length PDFs for Quake 3 during active game-play

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.01

0 100 200 300 400 500 600

Packet length (bytes)

fx

EPDF

Figure 11. Predicted (fx) and observed (EPDF) eight-player game message
length PDFs for Quake 3 during active game-play

CAIA Technical Report 050928A December 2005 page 9 of 11

0

0.005

0.01

0.015

0.02

0.025

0.03

0 100 200 300 400 500 600

Packet length (bytes)

EPDF

fx

Figure 12. Predicted (fx) and observed (EPDF) four-player game message
length PDFs for Unreal Tournament during active game-play

Again we can use the K-S test to quantify the
agreement between the predicted and empirically
derived distributions [17]. The range of the variable
parts of the packet sizes for the four-player, six-player
and eight player Quake 3 games are, respectively 250,
350 and 450 bytes. The details of the test for levels of
significance at 0.2 and 0.15 are shown in Table 3. From
the table, we can see that for the four and six player
games, we can accept the hypothesis that the predicted
and observed statistics are from the same distribution to
a very high level of significance. For the eight player
game, the level of significance is lower, but we can still
accept that the two data sets come from the same
distribution. Table 4 shows the same analysis for the
four player Unreal Tournament game. The K-S test
shows that we can accept that the two data sets come
from the same distribution to a high level of
significance.

Table 3. K-S test for Quake 3 four, six and eight player
games

Number
of
Players

Maximum
value of

|F0(X) - Sn(X)|

Maximum value of F0(X) -
Sn(X) for level of
significance

 0.20 0.15

4 0.0435 0.0676 0.0721

6 0.0525 0.0572 0.0609

8 0.0513 0.0478 0.0537

Table 4. K-S test for Unreal Tournament four player game

Number
of
Players

Maximum
value of

|F0(X) - Sn(X)|

Maximum value of F0(X) -
Sn(X) for level of
significance

 0.20 0.15

4 0.0435 0.0474 0.0505

Our model of server to client message sizes enabled
us to make a number of predictions about packet length
distributions. It predicted that the distribution would be
negatively skewed. It predicted that the mean length of
the messages would increase linearly as the number of
players increased. Using simplifying assumptions as to
player homogeneity and field-of-view restrictions, it
showed how the PDF of message length for a two player
game could be derived from the client to server PDF.
Finally it showed how the PDF of message length for
games with more players could be derived from the PDF
of a two player game. All these predictions are well
supported by the data from both Quake 3 and Unreal
Tournament trials.

However, despite the generally excellent agreement
there is some evidence that the assumptions of player
homogeneity and field-of-view limitations might be less
valid for larger numbers of players. Agreement between
the predicted and observed packet lengths for the eight
player game, while still very good, is not as good as for
the games with smaller numbers of players. The
empirical data has fewer shorter packets and more longer
packets than our model predicts. This would be
consistent with one or both of the homogeneity or field-
of-view assumptions breaking down. As the number of
players increases, proportionally more battles are likely
to occur. Also as the number of players increases,
restrictions on field-of-view are likely to occur more
often. Understanding how the assumptions of player
homogeneity and field-of-view break down and their
effect on game traffic are additional areas for future
research.

We can make a number of observations about game
traffic based on this analysis. The first is that the same
analysis can be successfully applied to two FPS games
with different development histories.

The second is that aggregate traffic generated by the
server will increase according to the square of the
number of players. In the absence of multicast there is a
single virtual connection to each player. As shown in
Figure 8 the length of the packet containing the game
state increases linearly as the number of players
increases. So the total traffic delivered by the server
increases according to the square of the number of
players.

The third is that since the packet length for larger
numbers of players can be described as a multiple of the
random variable describing the two player game we
would expect (from the Central Limit Theorem) the
packet length distribution to trend towards a Normal
distribution [3].

Finally, we see no evidence of anything likely to
produce fractal behaviour in traffic rates, which is in
agreement with the observations made in [10].

VI. CONCLUSION

The main contribution of this paper is that it puts the
large body of empirically derived game traffic models
onto a firm theoretical foundation. Our theoretical model
of the Interarrival time and packet size of traffic to and
from the server has predicted results that agree well with

CAIA Technical Report 050928A December 2005 page 10 of 11

the empirical data from our Quake 3 and Unreal
Tournament trials. However, it is important to note that
this paper is not an attempt to explain traffic generated
by those particular games. Rather we have attempted to
predict what traffic a generic FPS game is likely to
produce and used traffic traces of Quake 3 and Unreal
Tournament to test our predictions. Our concern is with
understanding the general characteristics of FPS game
traffic, rather than understanding any particular game.
Our ultimate goal is to be able to produce game traffic
models that we can trust for use in network simulations.
We need to know what can and cannot be generalized
about the empirical models. The work in this paper has
given use some insights into how game traffic is
constructed and so given us some confidence in judging
what we can and cannot generalize about the empirical
models.

At the start of this paper we posed two questions
about the empirical models of game traffic that have
been developed over the past few years: “Can they be
generalized?” and “Are they scalable?”

We began to answer these questions by proposing a
number of criteria that Internet-based FPS games would
probably need to meet. We then made a number of
predictions as to the characteristics of the traffic such a
protocol would generate and formulated these as a
theoretical traffic model. Finally, we compared our
theoretical model with empirical data captured from
controlled laboratory-based game trials. We have seen
excellent agreement between the predictions of the
theoretical model and the empirically derived model.

Our analysis began by modeling message interarrival
time. We then analysed message length PDFs. We
showed how server to client message lengths for a two
player game could be modeled, and demonstrated how to
predict message lengths for games with more than two
players. Despite having to make some simplifying
assumptions, our analysis agreed very well with the
empirical data. It showed that there are some quite
simple relationships between client to server traffic,
server to client traffic for two player games, and server
to client traffic for games with larger numbers of
players.

This approach to modelling game traffic opens up a
number of research areas. We have made a number of
assumptions regarding protocol design and player
behaviour. Since predictions based upon them agree very
well with empirically obtained data this would seem to
provide strong evidence that they are reasonable.
However, further work in verifying them or showing in
what situations they are invalid needs to be done. In
particular the assumptions of player homogeneity need
to be investigated. How valid is the assumption of player
homogeneity and what are the effects of it breaking
down?

In our analysis of the two player game we have made
simplifying assumptions about how field-of-view
restrictions affect the game-state distributed to players.
While the simplifying assumptions seem to result in a
good prediction of the Quake 3 and Unreal Tournament
traffic profiles there is much work to be done in

identifying if, how, and in what way the assumptions
fail. For example, how does a map's virtual geography
interact with field-of-view restrictions influence the
information transmitted to each client?

We have analysed packet interarrival times and
packet lengths as though the distributions are constant
throughout periods of game-play. Future work should
investigate how these network characteristics vary with
time.

Single-server first person shooters are not the only
games becoming prevalent on the Internet. Future work
should consider whether peer-to-peer and multi-server
games can be analyzed as we have analyzed single-
server games, and whether similar assumptions can be
formulated for other game styles.

In this paper we have made a step towards more
accurately understanding and predicting online first
person shooter game traffic. We have shown that it has a
predictable structure and, as a result, we can judge the
generality and scalability of some of the empirical
models that have been developed in the past few years.
Consequently, we can have more confidence in
simulation and analytical models used to investigate and
design game traffic systems than would otherwise be the
case.

ACKNOWLEDGMENTS

This work was partly supported by the Smart Internet
Technology Cooperative Research Centre.
http://www.smartinternet.com.au. .

REFERENCES
[1] Console wars The Economist, 2002.

[2] Wikipedia http://en.wikipedia.org/wiki/Wallhack, 23 August 2005

[3] Ash, R. Basic probability theory. Wiley, New York, 1970.

[4] Borella, M., Source models of network game traffic. in Proc.
Networld+interop'99, (Las Vegas, NV, May 1999).

[5] Borella, M. Source models of network game traffic. Computer
Communications, 23 (4). 403-410.

[6] Cunha, C., Bestavros, A. and Crovella, M., Characteristics of WWW
Client-based Traces. Boston University Technical Report, BUCS-95-010
(1995).

[7] Farber, J., Network game traffic modelling. in Proc of the first ACM
workshop on network and system support for games, (Braunschweig,
Germany, April 2002).

[8] Farber, J. Traffic Modelling for Fast Action Network Games.
Multimedia Tools and Applications, 23 (1). 31-46.

[9] Feng, W., Chang, F., Feng, W. and Walpole, J., Provisioning on-line
games: a traffic analysis of a busy Counter-Strike server. in Proc. of
SIGCOMM Internet Measurement Workshop, (Marseille, France,
November 2002).

[10] Feng, W.-C., Chang, F., Feng, W.-C. and Walpole, J. A traffic
characterization of popular on-line games. IEEE/ACM Transactions on
Networking, 13 (3).

[11] Floyd, S. and Kohler, E., Internet Research Needs Better Models. in
First Workshop on Hot Topics in Networks, (Princeton, New Jersey, 28-
29 October).

[12] idsoftware. Quake 3 http://www.idsoftware.com/, February2005

[13] Lang, T. and Armitage, G., A ns2 model for the Xbox system link game
HALO. in Proc. Australian Telecommunications Networks and
Applications Conference, (Melbourne, Australia, December 2003).

[14] Lang, T., Armitage, G., Branch, P. and Choo, H., A synthetic traffic
model for Half-Life. in Proc. of the Australian Telecommunications
Network and Applications Conference, (Melbourne, December 2003).

CAIA Technical Report 050928A December 2005 page 11 of 11

[15] Lang, T., Branch, P. and Armitage, G., A synthetic model for Quake 3
traffic. in Proc. ACM SIGCHI Advances in Computer Entertainment
(ACE2004), (Singapore, June 2004).

[16] McCreary, S. and claffy, k., Trends in wide area IP traffic patterns: a
view from Ames Internet Exchange. in 13th ITC Specialist Seminar on
Measurement and Modeling of IP Traffic, (Monterey, California,
September 2000).

[17] Sprent, P. Applied nonparametric statistical methods. Chapman and
Hall, London, 1989.

[18] The Valve Developer Community. Source Multiplayer Networking
http://developer.valvesoftware.com/wiki/Source_Multiplayer_Networki
ng, 15 August2005

[19] Wells, R. Applied Coding and Information Theory for Engineers.
Prentice-Hall, New Jersey, 1999.

[20] Zander, S. and Armitage, G., Empirically measuring the QoS sensitivity
of interactive online game players. in Proc. Australian
Telecommunications, Networking and Applications Conference 2004
(ATNAC 2004), (Sydney, December 2004).

[21] Zander, S. and Armitage, G., A traffic model for the XBOX game Halo
2. in 15th ACM International Workshop on Network and Operating
System Support for Digital Audio and Video (NOSSDAV 2005),
(Washington, June 2005).

