
Improving NetSniff Capture Performance on
FreeBSD by Increasing the PCAP Capture Buffer

Size¤

Jason But, Julie-Anne Bussiere*

Centre for Advanced Internet Architectures. Technical Report 051027A
Swinburne University of Technology

Melbourne, Australia
jbut@swin.edu.au , julie-anne.bussiere@laposte.net

Abstract- NetSniff is an IP traffic analysis tool that is capable
of multi-protocol, live capture analysis. Previous work has
revealed that under live capture situations, NetSniff
performance was often limited not by available system
resources, but rather by the size of the buffer employed by the
PCAP library to store captured packets prior to processing. In
this paper we examine how this buffer size is determined and
look at what performance gains we can achieve when we
increase the size of the PCAP buffer.

Keywords- NetSniff, live capture, performance.

I. INTRODUCTION

NetSniff is a multi-network-layered real-time traffic
capture and analysis tool developed as part of the ICE3

project being run out of the Center for Advanced
Internet Architectures (CAIA) [1]. The NetSniff tool is
currently deployed in low-bandwidth and low-traffic
scenarios. To gather more useful information, we would
like to deploy it within networks where the number of
aggregate users is higher.

One problem highlighted in earlier experiments is the
size of the capture buffer used by the PCAP capture
library which is employed by NetSniff [2]. Using the
default configuration options, this buffer is set at 32kB,
the relatively small size of this buffer led to frequent
overflow scenarios under test conditions which meant
that NetSniff was not able to capture and parse live
network traffic at the same rate that its raw processing
performance figures might suggest [3].

In this paper we discuss exactly how the underlying
PCAP library sizes the buffer it uses when capturing
network traffic on a FreeBSD based system, and how
this size might be changed to potentially improve the
real-time capture performance of NetSniff. Finally we
will run some tests to confirm just how much the capture
performance of NetSniff has been improved.

The report is structured as follows: In the section two
we discuss the implementation of the PCAP network
capture library on FreeBSD and the means by which the
cacpture buffer size is set. In section 3 we discuss how
the capture buffer size can be changed on a FreeBSD

system and in section 4 we measure the impact of
increasing the buffer size in limiting buffer overflow and
improving NetSniff capture performance.

II. PCAP IMPLEMENTATION ON FREEBSD
The PCAP packet capture library is developed and

maintained by the developers of tcpdump [4]. The
tcpdump application also uses the PCAP capture library
to perform the actual packet capture. The advantages of
using PCAP are:

• Packet capture is handled for you.

• Functionality to read/write tcpdump formatted files.

On a FreeBSD based system, the PCAP capture
library uses the system provided BPF (Berkeley Packet
Filter) interface to actually capture the network traffic.
At the time of writing, the current version of the PCAP
library is 0.9.4. When looking at the source code, the
file that implements the interface between the PCAP
API and the underlying BPF API is called pcap-bpf.c
and the relevant lines of code are listed in Figure 1.
if ((ioctl(fd, BIOCGBLEN, (caddr_t)&v) < 0) || v < 32768)
 v = 32768;
for (; v != 0; v >>= 1) {
 /* Ignore the return value - because the call fails
 * on BPF systems that don't have kernel malloc. And if
 * the call fails, it's no big deal, we just continue to
 * use the standard buffer size.
 */
 (void) ioctl(fd, BIOCSBLEN, (caddr_t)&v);
 (void)strncpy(ifr.ifr_name, device, sizeof
(ifr.ifr_name));
 if (ioctl(fd, BIOCSETIF, (caddr_t)&ifr) >= 0)
 break; /* that size worked; we're done */

 if (errno != ENOBUFS) {
 snprintf(ebuf, PCAP_ERRBUF_SIZE, "BIOCSETIF: %s: %s",
 device, pcap_strerror(errno));
 goto bad;
 }
}

Fig. 1. Buffer Size Setting Code from pcap-bpf.c

This code functions as follows:

• Attempt to read the current BPF buffer size into the
variable v.

¤ All experiments performed on FreeBSD v5.3 running NetSniff release v050722 and libpcap release 0.9.4

* Julie-Anne Bussiere performed this work while a visiting research assistant at CAIA in 2005

CAIA Technical Report 051027A October 2005 page 1 of 3

• If the read fails, or the current BPF buffer size is less
than 32768 (32kB), set the value of v to 32768.

• In a loop attempt to set the BPF buffer size to the
value of v. If the attempt fails, halve the value of v
and repeatedly try again.

Under the default FreeBSD configuration, the BPF
buffer size is set to 4096 bytes (4kB). This means that
when the BPF socket is opened by the PCAP library, it
reads this value into v. Since this is less than 32kB, v
gets instead set to 32768. The PCAP library then
attempts to set the BPF buffer size to 32kB, this call
succeeds since the default system parameters allows a
buffer size of up to 512kB to be set.

As such, unless certain system wide parameters are
changed (the default BPF buffer size and the maximum
BPF buffer size), or the PCAP library is recompiled with
a different initial buffer size of 32kB, then every
network capture application launched under FreeBSD
will use an underlying BPF buffer of 32kB in size.

III. INCREASING THE PCAP BUFFER SIZE

Recompiling the PCAP library might be an option,
but then we would have to relink all the traffic capture
applications to make use of the newly compiled library.
More useful would be to change one – or both of – the
default and maximum BPF buffer sizes as defined
within the operating system.

On a FreeBSD 5.3 system, both of these values can
be modified using system control variables, which can
be directly modified using the sysctl command.

The BPF buffer size within the system is defined by
the system control variable debug.bpf_bufsize,
which has a default value of 4096. Changing this value
will determine the initial value to which v is set within
the PCAP library.

The maximum BPF buffer size that can be set is
defined by the system control variable
debug.bpf_maxbufsize, which has a default value
of 524288 (512kB). Any attempt to set a buffer size
greater than this value will fail and cause the buffer size
setting loop to halve v and try again. Changing this
value to 16384 for example would cause all PCAP
enabled applications to run with a packet capture buffer
of size 16kB as the initial (v=32768) gets halved when
the buffer size allocation fails.

For example, to set the default buffer size to 512kB
and the maximum buffer size to 1MB (with the result
that NetSniff and other PCAP enabled applications
would use a buffer of size 512kB) we could issue the
commands [5]:

>sysctl debug.bpf_maxbufsize=1048576

>sysctl debug.bpf_bufsize=524288

Under FreeBSD, it would be prudent to add the
following lines to /etc/sysctl.conf to ensure that
these values are correctly set each time the system is
rebooted[6].

debug.bpf_maxbufsize=1048576

debug.bpf_bufsize=524288

IV. EXPERIMENTAL RESULTS RUNNING NETSNIFF

We reset the BPF buffer size system control variable
debug.bpf_bufsize to 512kB (524288). This
larger buffer size can potentially be filled in about 40ms
at an incomming rate of 100Mb/s. The expected effect
is that the required traffic burst to overflow the data will
be increased in size and fewer packets will be dropped
as long as the average bitrate of captured traffic remains
below average processing rate that NetSniff can
maintain [3].

We have replayed the previously generated traffic
traces consisting of traffic from 1 and 30 unique hosts
[2] at a variety of different rates and consider the
percentage of dropped packets as NetSniff attempts to
analyse the traffic. The original results (buffer size is
32kB) are shown in Figure 1, while the new results with
the larger buffer are shown in Figure 2.

Fig. 2. Percentage of dropped packets for different
numbers of concurrent hosts

As expected, the increased buffer size has resulted in
an increase in the packet rate at which traffic can be
successfully captured and analysed by NetSniff before
too many packets are dropped and NetSniff cannot be
used properly.

Fig. 3. Dropped packet rate with a 512kB PCAP buffer

For the case of traffic from one unique host, the
threshold where zero packets are dropped by NetSniff
has shifted from 3,000pps to 12,600pps. This

CAIA Technical Report 051027A October 2005 page 2 of 3

0 2500 5000 7500 10000 12500 15000

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

30 hosts

1 host

Packet rate

D
ro

p
p
e
d

 p
a

ck
e
ts

 (
%

)

1000 2000 3000 4000 5000 6000 7000

0

2.5

5

7.5

10

12.5

15

17.5

20

22.5

1 host

10 hosts

20 hosts

30 hosts

Packets/s

D
ro

p
p
e
d
 p

a
ck

e
ts

 (
%

)

corresponds to an increase of the traffic bitrate to
85.7Mb/s. Similarly in the case of traffic from 30
unique hosts, the zero packet loss threshold has
increased to 10,000pps (about 68.3Mb/s)

These increased processing rates correlate well with
the expected maximum processing rate of NetSniff on a
Pentium4 equiped platform of about 80Mb/s [2]. We
would expect that on future machines with increased
processing power, we would again be able to match the
raw NetSniff processing rate with the live capture
processing rate through a judicious increase in the PCAP
buffer size.

V. CONCLUSION

Previous experimentation revealed that NetSniff
performance in a live packet capture scenario was not
limited by available system resources (processor type,
clock speed, system memory), but instead by the limited
size of the fixed buffer employed by the PCAP capture
library. In this paper we examine how this buffer size is
determined within the PCAP library and measure the
performance of NetSniff with a larger configured buffer.

The default configuration of a FreeBSD based
system means that any traffic capture and analysis
software that uses the PCAP capture library will run
with a fixed buffer size of 32kB. It is possible to modify
this behavious through changing the values of two
system control variables debug.bpf_bufsize and

debug.bpf_maxbufsize. The values of these variables
can be changed permanently by setting their values in the file
/etc/sysctl.conf

We increased the system buffer size from the default value
of 4kB (which results in PCAP setting a buffer size of 32kB)
to 512kB and re-ran the live capture experiments from [3].
Under the new system conditions, we discovered that
NetSniffs live capture performance now correlated with its
raw packet processing performance, an indication that
NetSniff was now being limited by system resources rather
than the PCAP buffer size.

Our results pertain specifically to a FreeBSD 5.3 based
system running version 0.9.4 of the PCAP library and
v050722 of NetSniff. While some of these problems may be
addressed in future implementations of any of these three
software products, we expect that our solution can continue to
be applied while the buffer overflow problem remains.

REFERENCES

[1] Inverted Capacity Extended Engineering Experiment (ICE
3

),
http://caia.swin.edu.au/ice, accessed August 2005

[2] J.Bussiere, J.But, "Measuring the performance of Netsniff: Testbed
design", CAIA Technical Report CAIA-TR-050623A, June 2005

[3] J.Bussiere, J.But, "Measuring the processing performance of NetSniff",
CAIA Technical Report CAIA-TR-050823A, August 2005

[4] TCPDump, http://tcpdump.org, accessed June 2005

[5] FreeBSD System Managers Manual, sysctl (8), System Man Pages

[6] FreeBSD File Formats Manual, sysctl.conf(5), System Man Pages

CAIA Technical Report 051027A October 2005 page 3 of 3

