
ANGEL Flow Classifier
Software Architecture Design Document

Jason But
Centre for Advanced Internet Architectures, Technical Report 070228D

Swinburne University of Technology
Melbourne, Australia

jbut@swin.edu.au

Abstract—The Automated Network Games Enhance-
ment Layer (ANGEL) project aims to leverage Machine
Learning (ML) techniques to automate the classification
and isolation of interactive (e.g. games, voice over IP) and
non-interactive (e.g. web) traffic. This information is then
used to dynamically reconfigure the network to improve
the Quality of Service provided to the current interactive
traffic flows and subsequently deliver improved perfor-
mance to the end users. Within this scope, the project will
develop protocols that allow the adjustment of Consumer
Premise Equipment (CPE - eg. cable/ADSL) configuration
to provide better quality of service to interactive flows
detected in real-time.

This document describes the basic design motivation
of the Flow Classifier Software Component of ANGEL.
The Flow Classifier is responsible for analysing packet/flow
statistics compiled by the system Flow Meter(s) to classify
the flows in realtime, and then to forward any changes to
Classification in any current flows to the Client Manager
Component.

I. INTRODUCTION

This document details the software design decisions
made when building the ANGEL Flow Classifier. In
particular we discuss how the design takes scalability
into account as well as looking at the modularity of a
system that allows for replacement of the module that
actually performs the classification. Also of note is how
the software is designed to meet the requirements of the
Flow Classifier within the scope of the ANGEL Project.

II. FLOW CLASSIFIER REQUIREMENTS

We start by repeating the minimum requirements
and tasks from the ANGEL Architecture document [1].
These provide a useful reference when considering any
specific constraints in the software architecture.

From February 2007 and July 2010 this report was a confidential
deliverable to the Smart Internet Technologies CRC. With permission
it has now been released to the wider community.

An ANGEL System consists of a single Flow Classi-
fier. System scalability SHOULD be implemented either
as a multiple parallel ANGEL systems or through the use
of load balancing within a cluster of machines.

The primary tasks of a Flow Classifier are:
• Classify flows based on the packet statistics pro-

vided by any Flow Meters within the system
• If a new flow is classified as requiring prioritisation

signal this information to the Client Manager
• If an existing flow changes its classification, signal

this information to the Client Manager
• Purge stored flow information when that flow ter-

minates
• When a flow terminates signal this information to

the Client Manager
Key design restrictions for all aspects of the ANGEL

Flow Meter are:
• Configured with (either locally or from the ANGEL

Database):
– IP Address of the ANGEL Database
– IP Address of the ANGEL Client Manager to

communicate the flow classification informa-
tion to

– Flow timeout values
• Store state information for currently active flows

such that a change in state can be detected
• If any of the following classifications are made,

signal the Client Manager with the flow hash of
the flow

– A new flow is categorised as realtime
– A previously non-realtime flow is categorised

as realtime
– A previously realtime flow is categorised as

non-realtime
– A flow is determined to have terminated

• Flow classifications are always communicated to a

CAIA Technical Report 070228D February 2007 page 1 of 9

mailto:jbut@swin.edu.au


single Client Manager
• Packet statistics for multiple flows can be sent in a

single packet to the Flow Classifier

A. Key Restrictions

The ANGEL Flow Classifier should be built as a
system that uses both a forked process AND threaded im-
plementation. The use of multiple underlying processes
allows the Classifier to take advantage of Clustered OS
implementations such as OpenMosix [2] that implement
load balancing of multiple processes. This task cannot
be achieved using threads since threads take advantage
of shared memory which is either not possible or not
efficient with tasks spread across multiple machines.

While processes should be used to implement support
for load-balanced systems, it is viable to use threads
within these processes where this may facilitate imple-
mentation.

The external database is used by the Flow Classifier to
retrieve configuration information. Speed of access to the
external database is undetermined since it may be located
on a physically seperate machine. It is imperative that
accesses to the database are minimised and configured
in such a way so as to not limit the processing capability
of the Flow Classifier.

The Flow Classifier must send information to the
Client Manager for each change in flow classification
state. It is anticipated that the amount of data generated
here will be minimal:

• A good classifier will not repeatedly change its
classification for a flow, it is expected that each flow
will generate at most two or three classifications in
its lifetime

• Notification (to the Client Manager) is not required
if the flow is initially classified as non-realtime.
Since the majority of flows fall into this category it
is expected that the actual number of notifications
will be minimised

We propose for redundancy to be handled by clus-
tering techniques. The prototype Flow Classifier will be
implemented on the Linux based OpenMosix clustered
system which implements load balancing by launching
processes on different machines in the cluster. The OS
will automatically use whatever machines are available in
the cluster - including machines that newly come online.
The scenario of a machine failing can be detected -
the flows that were currently being classified on those
machines will obviously not be classified however the
Classifier should be designed such that future packets
within those flows will be allocated to new processes on

other machines for future classifications - resulting in
minimal extra time to classification.

B. System Configuration

The Flow Classifier must run using some config-
uration options. The ANGEL Architecture allows for
configurable options to be stored in the database. Even
so we must also allow for configuration options to be
stored locally on the Flow Classifier. Further, some
configuration options must be known prior to using the
database.

1) Local Configuration Information: The Flow Clas-
sifier should use a local configuration file which stores:

• Database Contact Information - Details required to
contact and use the external database. This could
include details such as IP address, username, pass-
word, etc.

Other configuration information must be stored in the
database. This includes:

• Client Manager Contact Information - Details to
forward classification information to.

III. MULTI-PROCESS/THREADED DESIGN

The Flow Classifier will be designed as both a multi-
processed and multi-threaded application. This structure
allows scalability and redundancy through the use of
processes with OpenMosix and threads within these pro-
cesses to improve inter-thread communication and usage
of CPU resources on an individual Classifier Cluster
machine.

The processes will use standard inter-process com-
munication techniques to forward information between
them, threads running within a single process will use
standard memory sharing techniques (eg. Mutual Exclu-
sions) to share information and to protect shared data.

In this section we will highlight the main processes
and threads of execution and their primary tasks. Subse-
quent sections will describe the implementation of each
process and thread in more detail.

The Flow Classifier will not have information about
the source and destination IP address/Port Number tuples
identifying a flow. Within the Flow Classifier all flows
are identified by a 32-bit Flow Hash which is calculated
by the Flow Meter from the flow tuple data. This is done
to minimise the data being sent by the Flow Meter to the
Flow Classifier over the network. The Classifier can use
the Flow Hash field to sort packets into their independent
flows and perform classification. The Flow Hash must
be used when communicating classification output to
the Client Manager - the Client Manager will use this

CAIA Technical Report 070228D February 2007 page 2 of 9



data to extract tuple information from the database to
determine which CPE device(s) need to be informed
about independent flow classification decisions.

A. Parent Process

The parent process is the primary process of the
Flow Classifier that receives communications from the
assorted ANGEL Flow Meters and distributes classifica-
tion change notifications to the ANGEL Client Manager.
Other responsibilities of the parent process include man-
aging Child Processes to perform the classification tasks.

Essentially we should consider this process to play the
co-ordinating role for the Classifier implementation. In
order to achieve this task, we have designed the Parent
Process to be implemented as three concurrent threads
working together to perform the actions required. These
threads are detailed below.

1) Meter Network Thread: The Meter Network
Thread is responsible for receiving captured packet infor-
mation from the systemwide Flow Meters and forward-
ing them to the appropriate Child Processes for clas-
sification. This task involves the management, creation
and removal of Child Processes as required to support
the processing load, as well as maintaining the internal
database of which Child Processes are classifying which
individual network flows.

System configuration information will be used to
determine the number of individual flows to be assigned
to each Child Process, the Meter Network Thread must:

• Keep track of individual flows allocated to processes
• Create new Child Processes for new flows where no

existing Child Processes have spare capacity
• Destroy Child Processes as flows terminate and the

number of flows being handled by the Child Process
drops to zero

The packet statistics for flows must be passed to
the appropriate Child Process for handling and classi-
fication. Since this task is executed in a seperate pro-
cess, this must be managed by a standard inter-process
communication technique. In order to facilitate this a
series of communication channels must be established
between the Parent Process and each individual Child
Process. The application structure is not a true peer-
to-peer environment, Child Processes do not need to
communicate with - nor be aware of - other Child
Processes. There is no requirement for communication
channels to exist between Child Processes - only the
direct tree-like structure between the Parent and each
Child.

2) Manager Network Thread: The Manager Network
Thread is responsible for receiving classification infor-
mation from the Child Processes (after a flow classi-
fication has changed state) and to frame and forward
this information onto the Client Manager for commu-
nication with the end-use CPE devices. This process is
relatively straight-forward as communication flow forms
a many-to-one scenario - multiple Child Processes send
information to the single thread which queues individual
notification for delivery to a single Client Manager.

The amount of traffic generated here is expected
to be minimal, messages are only generated when a
Child Process changes its classification of a flow, this
is expected to occur infrequently for most flows. Also,
no notification is ever sent if a flow is only ever classified
as non-realtime - this should be the majority of flows.

An implementation would block on data to be received
from any of the communications channels to the multiple
Child Processes, as information is received from a Child,
it is formatted for susbsequent delivery to the Client
Manager.

3) Primary Thread: As well as launching the other
threads to perform the management of the Flow Clas-
sifier, the Primary Thread is also responsible for peri-
odically polling the database for updated configuration
information. This includes configuration settings for both
the Client Manager to forward Classification Changes to
and the number of flows to allocate to individual Child
Processes for handling. The polling period is not required
to be frequent as this information is likely to remain
stable for extended periods of time and reading these
values at time intervals measured in minutes would be
acceptable

B. Child Process

The Child Process is responsible for receiving per-flow
packet statistics from the Parent Process, performing
classification on those flows, and forwarding any changes
in classification back to the Parent Process. The Child
Process is designed to be independent of any other
concurrent Child Processes and can be implemented to
assume that only flows it receives data for are of interest.
The Child Process should not assume the maximum
number of flows to be handled, management of how
many flows to allocate to a Child Process is handled
by the Parent Process.

This independence allows for multi-hardware load
balancing as the Child Process may be run on different
hardware than the Parent Process. For each packet in
each flow, the Child Process must calculate and update

CAIA Technical Report 070228D February 2007 page 3 of 9



per-flow statistics, which will then be used by a Clas-
sifier module to classify the flow. These tasks can be
performed sequentially and do not require independent
threads for implementation.

In our prototype, the classifier module is implemented
as a Machine Learning Classifier, more details are pro-
vided later in this document.

Communications between the Parent and Child Pro-
cesses are to be performed using a standard inter-process
communication technique.

C. Inter-Process Communication

We use standard Interprocess Communication (IPC)
techniques allow data to be passed between two separate
processes on a system. Of the available IPC methods,
we plan to use IPC messages and a Message Queue
to share data between processes. These IPC Messages
can be considered analogous to ’packets’ (as used in IP
socket communications).

We create a single, private message queue by the
parent process when the system is launched. By making
the queue private we ensure that only the parent and its
child processes are allowed access.

As the queue is shared amongst the parent/child(ren),
we need a means of addressing the intended recipient
of each message. Also we would like to implement a
scheme where children may only send messages to the
parent - not to each other. This is implemented using the
process PID of the intended destination process as the
“message type” of the IPC Message field. This scheme
works well as the parent knows the PID of all the Child
Processes while the Child only knows the PID of itself
and the parent. Messages are only removed from the
queue by the process with PID matching the “message
type” of the message.

The design of the ANGEL Flow Classifier makes
extensive use of messages, one message is generated
for EACH packet captured by a Flow Meter. A single
message from the Flow Meter often contains statistics
for approximately 100 captured packets. Also messages
are generated for each change in classification - but this
occurs less often. The system running the Flow Classifier
SHOULD configure the IPC messages to support 1,024
or 2,048 system messages to ensure that threads and
processes are not blocked due to a full message queue.

This common problem was discovered during im-
plementation on a FreeBSD workstation. The default
FreeBSD IPC configuration only allows for 16 pending
messages to be placed in the message queue. Also the
implementation of message queueing means that if a

signal is received by the application from the OS while
a process is blocked on the message queue, then the
program is terminated.

In order to fix this problem on a FreeBSD sys-
tem the following lines need to be added to the file
/boot/loader.conf

kern.ipc.msgmnb=8192
kern.ipc.msgmni=40
kern.ipc.msgseg=1024
kern.ipc.msgssz=16
kern.ipc.msgtwl=2048

ANGEL is not the only application that makes exten-
sive use of IPC messaging requiring this reconfiguration
of the OS IPC Message System. The Squid Proxy Server
[3] also requires reconfiguration of the underlying IPC
message queues to improve performance.

D. Inter-Thread Communication

All threads need to be able communicate data amongst
in other. In threaded applications, this is typically done
through the use of shared memory and variables. Prob-
lems occur when two threads need to access the same
memory block at the same time. This situation is typ-
ically solved via the use of Mutual Exclusions and
Semaphores which cause some threads to block while
protected code is being executed.

Common difficulties with this approach arise because:
• To ensure that we have thread-safe code we need

to wrap as much as possible inside a protected
space. This ensures that we don’t miss a shared
variable modification which could cause the code
to misbehave

• To develop an optimal/efficient system, we need to
wrap as little as possible inside a protected space.
This ensures that code is only blocked from exe-
cuting when it is absolutely necessary, maximising
CPU usage

All access when pushing data onto - and popping
data off - inter-thread communication queues must be
protected with a mutual exclusion. If a thread wants to
push data onto a queue it must wait until the other thread
has finished retrieving from the queue.

All access to shared variables must be protected with
a mutual exclusion.

E. Clustering Operating Systems

The Flow Classifier is designed in this way such
that it might work with a clustered operating system
such as OpenMosix. In this system management of

CAIA Technical Report 070228D February 2007 page 4 of 9



processes and inter-process communications is managed
by the Operating System which provides unique process
IDs across the cluster. Similarly pipes and other inter-
process communication channels are managed by the
Clustered kernel code to forward data between comput-
ers if required - this is all performed transparently to the
applications.

The end result is that any program that is written
to launch and create child processes may find those
processes actually launched and executed on other com-
puters within the cluster. A primary advantage of using
the clustered operating system to perform load balancing
is that the final code can execute unchanged on a single
- non clustered - system.

F. Development Tools

The Flow Classifier makes use of the ACE li-
brary/toolkit. We use this toolkit to provide C++ wrap-
pers around common network functionality (sockets) as
well as to provide tools to manage thread creation, thread
management and inter-thread communication.

IV. PARENT PROCESS

The parent process is the primary system process
that executes when the Flow Classifier is instatiated.
Its primary responsibities are to manage the Classifier
framework such that classification work can be delegated
to one of multiple Child Processes, each potentially
running on different machines within a cluster.

In order to simplify implementation, the role of the
Primary Process can be considered to be twofold:

1) Receive Packet statistics from the assorted Flow
Meters and forward them to the appropriate Child
Classification Processes to be classified

2) Receive classification information from the Child
Processes and forward this to the Client Manager
for ultimate delivery to relevant CPE devices

The implementation of this is broken into two threads
of execution, with the primary thread maintaining overall
system management and control.

A. Meter Network Thread

This thread should be implemented in a class called
FlowMeterNetworkTask. The FlowMeterNetworkTask
class should:

• Be inherited from the ACE ACE Task class. This
class implements thread safe queues to allow other
threads to post messages to this thread

• Manage creation and termination of independent
Child Processes as required to classify packets for
independent flows

• Manage mapping of flow hashes to Child Processes
for classification purposes

Once running the main service thread should contin-
uously:

• Get the next packet sent to it from one of the system
Flow Meters

• Parse that packet and extract statistics for each
individual packet

• Determine which Child Process is responsible han-
dling the flow of each individual packet.

– If no process is currently handling that flow
(new flow) then assign the flow to a child
process

– If all child processes have been allocated a full
quota of flows to handle, create a new child
process to handle flows

• If the packet statistics signal that the flow has
terminated

– Remove the Flow Hash from the list of flows
handled by a particular Child Process

– Forward the flow termination signal to the
Child Process

– If the Child Process is no longer processing
any active flows, signal the Child Process to
terminate

• Pass the packet statistics to the Child Process for
classification

• If signalled to terminate by the primary thread we
need to stop reading received data, signal (and wait
for) the Child Processes to terminate, and terminate
the thread

1) Construction/Initialisation: The class constructor
should create the UDP socket for receiving data from
the Flow Meters. The socket should be closed in the
destructor.

2) Main Processing: Processing is performed in the
svc() method. This should run as an infinite loop which
alternates between checking for packets arrived at the
UDP Socket and for messages queued to its Message
Queue. The only message sent to this Thread is the
MB HANGUP message to signal thread termination.

For any packets received on the UDP socket, they
should be retrieved and parsed to extract flow hash
information. Helper classes should be used to determine
which Child Process to deliver the packet data to.

CAIA Technical Report 070228D February 2007 page 5 of 9



B. Manager Network Thread

This thread should be implemented in a class
called ClientManagerNetworkTask. The ClientManager-
NetworkTask class should:

• Be inherited from the ACE ACE Task class. This
class implements thread safe queues to allow other
threads to post messages to this thread

Once running the main service thread should contin-
uously:

• Get the next flow classification signal sent by any
of the Classifier Child Processes

• Format that signal into the appropriate form for
delivery to the Client Manager

• Send the change in Flow State information to the
Client Manager for ultimate delivery to appropriate
CPE device(s)

1) Construction/Initialisation: The class constructor
should create the UDP socket for later communications
by the thread to the Client Manager. The socket should
be closed in the destructor.

2) Main Processing: Processing is performed in the
svc() method. This should run as an infinite loop which
alternates between checking for signal received from the
Child Processes and for messages queued to its Message
Queue. The only message sent to this Thread is the
MB HANGUP message to signal thread termination.

For any signals received from the Child Processes,
they should be reformatted for delivery to the Client
Manager and sent over the UDP Socket.

C. Primary Thread

The primary responsibilities of the primary thread are:
• Initialise the Flow Classifier System
• Launch the Flow Meter Network Thread
• Launch the Client Manager Network Thread
• Periodically poll the Database for changes to the

underlying system configuration
• Detect a system termination signal and signal the

created threads to terminate
• Properly release resources upon termination

V. PARENT HELPER CLASSES

This section highlights some of the Helper Classes
used by the Parent Process within the ANGEL Flow
Classifier implementation. These classes are primarily
used to manage internal data storage for the Classifier.
The general functionality of the major classes have been
described in previous sections.

The Parent Process must have some means for manag-
ing which Child Processes are allocated responsibility for
classifying individual flows and for forwarding packet in-
formation to the correct Child Process. This is managed
by the ChildManager and FlowManager classes.

A. ChildManager

The ChildManager class manages creation and de-
struction of child processes to perform the actual clas-
sification. It also manages a list of idle (or not fully
allocated) processes and assigns a PID as requested when
a new flow is created. This Class is used exclusively by
the FlowManager class to allocate PIDs to indivudual
flow hashes

The class should provide two methods, one to assign
a PID of a child able to process another flow and one to
decrement the count of flows managed by a child PID.

The first method would be called when a new flow is
detected and a child process must be allocated to handle
it. This method should return the PID of an existing child
process with spare capacity or - if none exists - fork a
new child process and return its PID.

The second method would be called when a flow has
terminated and is no longer managed by a certain PID.
This method should update internal counters for that
child process to maintain the count of flows handled by
that child. If the child is currently servicing no flows
then the child process must be signalled to terminate.

This helper class is only used by the Meter Network
Thread within the Flow Classifier, as such usage of Mu-
tual Exclusions to protect changes to internal variables
is not required.

B. FlowManager

The FlowManager class manages allocation, storage
and mapping of Child Process PIDs to Flow Hashes. An
instance of the ChildManager class is used to create,
destroy and allocate Child Processes for this class. The
class maintains an internal mapping of flow hashs to
child process PIDs.

The class should provide two methods, one to get the
PID of the child process that is handling the supplied
Flow Hash and one to remove a Flow Hash from the
map when the flow has terminated.

The first method would be called by the Meter Net-
work Thread to determine the correct PID to forward the
packet statistics to based on the Flow Hash. This method
should return the current mapping of the specified hash
to child process. If the flow is new and no mapping
exists, then it should use the ChildManager instance

CAIA Technical Report 070228D February 2007 page 6 of 9



to allocate a PID (and fork a process if necessary) and
update the map.

The second method would be called by the Meter Net-
work Thread when a flow has terminated. This method
should remove the current flow hash to PID mapping
and use the ChildManager instance to decrement the
count of flows handled by the process (and terminate
the process if necessary).

This helper class is only used by the Meter Network
Thread within the Flow Classifier, as such usage of Mu-
tual Exclusions to protect changes to internal variables
is not required.

VI. CHILD PROCESS

This is implemented as an extra set of processes rather
than threads to facilitate the implementation of load
balancing scalability and reliabity through the use of a
clustered-type operating system such as OpenMosix.

Each process is implemented such that it can receive
IPC messages containing packet statistics from the Par-
ent Process, the Parent sorting packets into unique flows
and assigning a subset of flows to each Child Process.
The overall implementation is such that a Child Process
can operate independently of all other Child Processes -
all packets for a particular flow will always be forwarded
to the same Child Process.

Any changes in flow classification needs to be for-
warded back to the Parent Process via an IPC message
for further communication to the Client Manager. Child
Processes also need to terminate cleanly when told to by
the Parent Process (no more flows to manage).

The ANGEL Prototype implementation should use a
Machine Learning based system to perform flow classi-
fication.

The process should be implemented in a class called
ClassifierProcess. The ClassifierProcess class should:

• Receive packet statistic information from the shared
IPC message queue with the Parent Process

• Keep track of all flows - using the Flow Hash - from
packet statistics it has seen

• Store and update statistics for each flow as a packet
arrives for that flow

• Classification is done on a sliding/jumping window
basis. When the window for a particular flow is full,
that flow should be classified and all statistics for
that flow should be zeroed for subsequent classifi-
cation on the next window of packets

• Classification is performed using some form of
Machine Learning technique

• When the classification of a flow has changed,
signal the parent process

Below we discuss the key aspects as relating to the
design of key components for this process

A. Per Flow Statistics

The process needs to uniquely track all packets for all
flows assigned it by the Parent Process. This information
should be stored in some form of internal database.

If possible - based on the Machine Learning imple-
mentation - we should calculate as many flow statistics
as possible on a packet-by-packet basis. This minimises
requirements for storing and indexing large amounts
amounts of data as well as spread the processing load
away from points in time when the sliding window is
full.

B. Sliding/Jumping Window

It is essential that Classification is performed while
the Flow is still active, this allows ANGEL to enable
flow prioritisation while it may be beneficial. Use of a
sliding window allows ANGEL to classify a flow once
enough packets for a flow have been seen. The concept
of flow classification using a sliding window was first
demonstrated by Nguyen [4], [5].

A true sliding window implementation would perform
a classification on the last N packets seen for each flow.
Once a flow initially fills the sliding window, it would be
possible to re-determine the flow classification for each
new packet seen on that flow. This would also result in
a high processing load due to repeated classifications for
each single packet witnessed. There is also the increased
complexity in managing the statistic calculation that
would need to be performed in this case - removing
the statistics for the packet that is no longer within the
window and adding the statistics of the newest packet.

The compromise position adopted in the ANGEL
Flow Classifier is to use a jumping window. In this
case once the jumping window is full with N packets, a
classification is made. The window is then emptied and a
classification is no longer made until another N packets
are witnessed. This results in one classification attempt
for every N packets seen on a particular flow. The effect
of this is a jumping window where the window jumps
its full size to process the next set of packets.

C. Classification

The prototype ANGEL Flow Classifier performs clas-
sification using a machine learning (ML) algorithm and
a vector of flow statistics calculated from the previous N

CAIA Technical Report 070228D February 2007 page 7 of 9



packets received for each flow where N is the size of the
jumping/sliding window. The result of the classification
indicates whether the flow is realtime or non-realtime
with the ultimate aim being whether the ANGEL CPE
devices should attempt to prioritise (realtime) a flow or
provide the standard best-effort services (non-realtime).

There are numerous ML algorithms that can be used
to provide classification. In our prototype we use an
implementation is of a Naive Bayes Classifier. The ML
algorithm is able to predict the class of a flow using a
classification model that is loaded from a configuration
file when the application is launched.

D. Classification Defaults

To simplify implementation of the code that signals
the Parent Process, the default classification of a flow is
for Non-Realtime traffic. In this case:

• If the first classification is non-realtime then the
classification is unchanged and the Parent Process
is not signalled - the desired result

• If the first classification is realtime then the classifi-
cation is changed and the Parent Process is signalled
with the fact that the flow is realtime

E. Minimising Flapping

In order to minimise the potential for classification
flapping (one window is classified as realtime, the next as
non-realtime, then realtime, etc.), we use an approach we
call ”Confirmed Classification”. This technique requires
that a classification be confirmed before updating the
actual classification and signalling the parent process. In
effect, there must be two consecutive realtime classifica-
tions for the classification to change from non-realtime
to realtime. Similarly, the must be two consecutive non-
realtime classifications for the classification to change
from realtime to non-realtime.

The basic algorithm deployed in the Classifier is:
loop
{

get packet stats

if new flow
create flow stats
flow[classification] = flow[last] = non-realtime

add packet to flow
if flow window full

current = classify flow stats

if (current = flow[last]) AND (current != flow[classification])
flow[classification] = current
signal parent of new classification - current

flow[last] = current
clear flow stats

}

VII. CHILD HELPER CLASSES

This section highlights some of the Helper Classes
used by the Child Process within the ANGEL Flow
Classifier implementation. These classes are primarily
used to manage internal data storage for the Classifier.
The general functionality of the major classes have been
described in previous sections.

The Child Process must have some means for manag-
ing calculation of flow statistics for each flow for which
it is responsible, as well as maintaining and managing
this information for all flows. This is managed by the
Flow and FlowMap classes. A further responsibility is to
perform the actual classification of flows, this is achieved
with the NaiveBayesClassifier class.

A. Flow

This Class is used within the Child Process to track
the statistics being calculated for each flow. Individual
packet statistics are added to this Class instance in a
manner that updates internal values. The Class is also
able to return flow statistics the calling Child Process
and to clear the statistics to signify the start of a new
classification window.

B. FlowMap

As each Child Process is responsible for classifying
a number of flows, there is a requirement for a data
structure to keep track of all the instances of the Flow
class. This data structure stores the mapping of Flow
Hash to Flow instances within the Child Process.

The class is implemented as a Singleton class within
the Child Process which manages thread-safe access
to an STL map data structure to store the required
information.

C. NaiveBayesClassifier

The ML Naive Bayes Classifier is implemented within
the NaiveBayesClassifier class. This implementation is
configured with a classification model which is loaded
from a configuration file when the Flow Classifier ap-
plication is launched. A change in the classification
model will require the Classifier (for our prototype
implementation) to be stopped and re-started.

The Classifier returns the classification of a flow
based on statistics gathered from the packet statistics
of the previous N packets for a given flow. As per the
previous section, the result it used by the Child Process
to determine whether the classification for a flow has
changed and whether to signal this change to the Parent
Process.

CAIA Technical Report 070228D February 2007 page 8 of 9



ACKNOWLEDGMENT

This work was supported from 2005 to early 2007
by the Smart Internet Technology Cooperative Research
Centre, http://www.smartinternet.com.au.

REFERENCES

[1] J. But et al., “ANGEL Architecture Document,” CAIA, Tech.
Rep. 070228A, February 2006, http://caia.swin.edu.au/reports/
050204A/CAIA-TR-050204A.pdf.

[2] OpenMosix Community, “The OpenMosix Project,” January
2007, http://openmosix.sourceforge.net.

[3] Squid Open Source Development Community, “Squid Web Proxy
Cache,” January 2007, http://www.squid-cache.org/.

[4] T. Nguyen and G. Armitage, “Training on multiple sub-flows to
optimise the use of Machine Learning classifiers in real-world
IP networks,” in Proceedings of the IEEE 31st Conference on
Local Computer Networks , Florida, USA, 2006.

[5] T. Nguyen and G. Armitage, “Synthetic Sub-flow Pairs for
Timely and Stable IP Traffic Identification,” in Proceedings
of the Australian Telecommunication Networks and Application
Conference , Melbourne, Australia, 2006.

CAIA Technical Report 070228D February 2007 page 9 of 9

http://caia.swin.edu.au/reports/050204A/CAIA-TR-050204A.pdf
http://caia.swin.edu.au/reports/050204A/CAIA-TR-050204A.pdf
http://openmosix.sourceforge.net
http://www.squid-cache.org/

	Introduction
	Flow Classifier Requirements
	Key Restrictions
	System Configuration
	Local Configuration Information


	Multi-Process/Threaded Design
	Parent Process
	Meter Network Thread
	Manager Network Thread
	Primary Thread

	Child Process
	Inter-Process Communication
	Inter-Thread Communication
	Clustering Operating Systems
	Development Tools

	Parent Process
	Meter Network Thread
	Construction/Initialisation
	Main Processing

	Manager Network Thread
	Construction/Initialisation
	Main Processing

	Primary Thread

	Parent Helper Classes
	ChildManager
	FlowManager

	Child Process
	Per Flow Statistics
	Sliding/Jumping Window
	Classification
	Classification Defaults
	Minimising Flapping

	Child Helper Classes
	Flow
	FlowMap
	NaiveBayesClassifier

	References

