
ANGEL Client Manager
Software Architecture Design Document

Jason But
Centre for Advanced Internet Architectures, Technical Report 070228E

Swinburne University of Technology
Melbourne, Australia

jbut@swin.edu.au

Abstract—The Automated Network Games Enhance-
ment Layer (ANGEL) project aims to leverage Machine
Learning (ML) techniques to automate the classification
and isolation of interactive (e.g. games, voice over IP) and
non-interactive (e.g. web) traffic. This information is then
used to dynamically reconfigure the network to improve
the Quality of Service provided to the current interactive
traffic flows and subsequently deliver improved perfor-
mance to the end users. Within this scope, the project will
develop protocols that allow the adjustment of Consumer
Premise Equipment (CPE - eg. cable/ADSL) configuration
to provide better quality of service to interactive flows
detected in real-time.

This document describes the basic design motivation of
the Client Manager Software Component of ANGEL. The
Client Manager is responsible for managing registration
and de-registration of individual ANGEL-enabled CPE
devices and then delivering flow classification information
from the Flow Classifier to all registered users that are
routing those flows.

I. INTRODUCTION

This document details the software design decisions
made when building the ANGEL Client Manager. In
particular we discuss how the design takes scalability
into account as well as looking at how functionality can
be provided to manage concurrent tasks of registering
CPE devices within the system and forwarding notifica-
tion to the end CPE devices. We also consider how the
software is designed to meet other requirements of the
Client Manager within the scope of the ANGEL Project.

II. FLOW CLASSIFIER REQUIREMENTS

We start by repeating the minimum requirements and
tasks from the ANGEL Architecture document. These

From February 2007 and July 2010 this report was a confidential
deliverable to the Smart Internet Technologies CRC. With permission
it has now been released to the wider community.

provide a useful reference when considering any specific
constraints in the software architecture.

An ANGEL System consists of a single Client Man-
ager. System scalability SHOULD be implemented ei-
ther as a multiple parallel ANGEL systems or through
the use of load balancing within a cluster of machines.

The primary tasks of a Client Manager are:
• Accept connections to the ANGEL System from

ANGEL enabled consumer routers
• Maintain the details of registered users in the AN-

GEL Database
• Manage the re-registration and de-registration of

ANGEL enabled consumer routers from the system
• Signal all appropriate routers upon detection of flow

classification changes by the Flow Classifier
Key design restrictions for all aspects of the ANGEL

Client Manager are:
• Configured with (either locally or from the ANGEL

Database):
– IP Address of the ANGEL Database
– Registration and Flow Notification timeout val-

ues
• Store state information for currently registered

clients and which range of IP Addresses they are
willing to receive Flow Notifications about

• Use the formally specified ANGEL CPE/Client
Manager Protocol [1] to allow implementation of
a multi-party system - in particular to allow for
third-party implementation of ANGEL enabled CPE
devices

• Filter flows to only communicate Flow Notifications
to current ANGEL enabled users

• Upon receiving notification that a flow has termi-
nated, send the appropriate notification to the CPE
device(s) AND remove the flow information from
the ANGEL Database

CAIA Technical Report 070228E February 2007 page 1 of 4

mailto:jbut@swin.edu.au


A. Key Restrictions

The Flow Classifier must communicate with ANGEL-
enabled CPE devices using the formally specified AN-
GEL Protocol [1]. The idea is to allow for a multi-
party system implementation. It is expected that the
majority of third-party devices will be present in the
form of ANGEL-enabled CPE devices and this device
is both bought and maintained by the user. It is also
possible that a third-party may choose to create a new
implementation of the ISP-side ANGEL components, in
this case the Protocol allows for use with pre-existing
ANGEL-enabled CPE devices.

It is not expected that the Client Manager will suffer
from a heavy load. The Flow Classifier must classify
all flows, the Client Manager need only communicate
changes in classification state to registered users. As
such both the generated network load and memory
requirements are orders of magnitude lower than that
required by the Flow Classifier devices.

B. System Configuration

The Client Manager must run using some config-
uration options. The ANGEL Architecture allows for
configurable options to be stored in the database. Even
so we must also allow for configuration options to be
stored locally on the Client Manager. Further, some
configuration options must be known prior to using the
database.

1) Local Configuration Information: The Client Man-
ager should use a local configuration file which stores:

• Database Contact Information - Details required to
contact and use the external database. This could
include details such as IP address, username, pass-
word, etc.

2) Database Configuration Information: Other con-
figuration information must be stored in the database.
This includes:

• Client Registration Timeout - Maximum period
before a CPE device must re-register before being
considered to have been switched off

• Flow Notification Timeout - Defines the period
where the presence of no traffic (at the CPE device)
for a specified flow indicates that the flow has
expired and that any prioritisation rules should be
removed by the Client. Implements a fail-safe where
old rules are eventually cleared if not specifically
removed by notifications from the Client Manager.

C. Multi-Threaded Design

The Client Manager is implemented as a multi-thread
design to take full advantage of processing capabilities
while other parts of the code are potentially blocked
waiting for system resources.

All threads need to be able communicate data amongst
in other. In threaded applications, this is typically done
through the use of shared memory and variables. Prob-
lems occur when two threads need to access the same
memory block at the same time. This situation is typ-
ically solved via the use of Mutual Exclusions and
Semaphores which cause some threads to block while
protected code is being executed.

Common difficulties with this approach arise because:

• To ensure that we have thread-safe code we need
to wrap as much as possible inside a protected
space. This ensures that we don’t miss a shared
variable modification which could cause the code
to misbehave

• To develop an optimal/efficient system, we need to
wrap as little as possible inside a protected space.
This ensures that code is only blocked from exe-
cuting when it is absolutely necessary, maximising
CPU usage

D. Flow Hash Translation

The Flow Classifier communicates Classification State
changes to the Client Manager, these flows are identified
using the Flow Hash initially generated by the Flow Me-
ters. The Client Manager MUST be able to determine the
flow identification tuples - source/destination IP address,
source/destination port, protocol - from the Flow Hash.
This information should be stored in the database by the
Flow Meter when the Hash was initially generated.

As previously mentioned, the load on the Client Man-
ager is not expected to be high, the rate of Classification
State Changes (see Flow Classifier Software Design
Document) being infrequent. As such, the rate at which
the external Database needs to be queuried for this
information should not be excessive.

E. Development Tools

The Flow Meter makes use of the ACE library/toolkit.
We use this toolkit to provide C++ wrappers around com-
mon network functionality (sockets) as well as to provide
tools to manage thread creation, thread management and
inter-thread communication.

CAIA Technical Report 070228E February 2007 page 2 of 4



III. ACE RADIUS STACK

The packet format in the protocol used by the Client
Manager to talk to ANGEL-enabled CPE devices is
based on the RADIUS protocol. To facilitate implemen-
tation of the Client Manager and ensure that minimal
bugs are generated in implementing the Protocol Stack
within the Client Manager, we make use of a pre-existing
RADIUS implementation for ACE.

“ACE RADIUS Library” is an implementation of the
RADIUS Protocol within the ACE framework and is
used to manage multiple connections to a server and
format packets for transmission [2]. The Library is
distributed with a BSD license [3] and as such we are
able to re-use it within the ANGEL code base.

However, the ANGEL Protocol is not a direct ex-
tension of RADIUS, but rather a Protocol that shares
much in common with RADIUS [1]. This dictates that
rather than compile and use the provided ACE RADIUS
Library as a basic library, we must take and slightly
modify the implementation to perform as required for
the purposes of ANGEL.

The code of the ACE RADIUS Library modified for
use in ANGEL can be found in the “protocollib” source
directory which compiles to a library to be linked with
the Client Manager code-base. Changes were made to
v0.8 of the original library.

A. Features of the ACE RADIUS Library

The “ACE RADIUS Library” is an add on for the
ACE library that is complian with RFC 2865 (Remote
Authentication Dial In User Service (RADIUS)) [4] and
implements all features described tehrein. The library
contains code to allow for the implementation of both
the Client and Server side of RADIUS programs.

The key features of the library include classes to pro-
duce and validate RADIUS packets and to handle packet
re-transmission and failures (with associated timers). The
library also has a number virtual callback functions to
allow packet parsing and creation at the application level.

B. Important Classes

The following classes can be found within the modi-
fied ACE protocol library:

• ManagementPacket - Provides packet definitions
and functionality to create and parse ANGEL Man-
agement Packets

• ManagementPacketAttribute - Provides defini-
tions of ANGEL packet attributes and the function-
ality to create and parse the attributes

• ServerConnection - Handles network communica-
tions. Used to receive and send management pack-
ets. The class also maintains the state of unacknowl-
edged packets and handles their retransmission.
This class is used by the Client Manager

• ServerStack - Provides a number of virtual callback
functions which are overloaded in the Client Man-
ager. These functions relate to sending and handling
received packets

• ClientConnection - Handles Client Interface net-
work communications. Creates a connection handle
to a server and then listens for and transmits man-
agement packets. This class is used by the ANGEL
Client

• ClientStack - Provides a number of virtual callback
functions which are overloaded in the ANGEL
Client. These functions relate to sending and han-
dling received packets

• CTask - Implements timers that are primarily used
for packet re-transmission

This section describes the major classes of the AN-
GEL Protocol Library and their functionality within the
Client Manager.

C. Modifications

A number of modifications to the original RADIUS
library have been made to suit the operation of the
ANGEL system. The principal modification has been the
redefinition of the RADIUS Packet Types and Attributes
as per the ANGEL Protocol [1]. In addition, two new
classes (ServerConnection and ServerData) have been
added to the library to provide expanded management
methods for the Client Manager (handling various new
packet types, maintaining client state etc):

These classes are based on the original ClientCon-
nection implementation with a number of modifications
to the packet-parsing and network socket methods. For
example, in the modified ANGEL implementation of the
ACE RADIUS Library a Server (Client Manager) uses
the ServerConnection class to send and receive packets,
whereas in the original implementation ServerStack is
used to transmit packets.

IV. CLIENT MANAGER CODE BASE

The multi-threaded implementation of the Client Man-
ager server is handled by the ANGEL Protocol Library
- an extension of the RADIUS implementation for ACE
(see Section III). Application dependent processing is
managed by inheriting from the CServerStack class.

CAIA Technical Report 070228E February 2007 page 3 of 4



Essentially the Client Manager code base reads some
basic configuration values before creating an instance
of the ManagerServerStack and the ServerConnection
classes. The underlying library code implements the
multi-threaded server while the primary code-base uses
the ClientMap and ManagerServerStack classes to
keep track of individual clients and communicate flow
notification updates to appropriate clients.

A. ClientMap
This helper class is used to map IP addresses to

instances of the Client class. The Client class is used to
store per-client information such as:

• IP Address and Port Number to send Flow Notifi-
cations to

• Time of last registration for timeout purposes
The class implementation provides a thread-safe

database allowing a lookup of client connection infor-
mation to the multi-threaded Client Manager implemen-
tation. Member methods allow determination if a client
exists in the map as well as for addition and removal of
client data from the map.

B. ManagerServerStack
This class is virtually inherited from the CServer-

Stack class - which is implemented in the ANGEL

Protocol Library. Extensions in this class manage parsing
of incomming packets and transmission of Flow Notifi-
cations to individual ANGEL CPE devices. The primary
implementation of the ANGEL Client Manager is based
in the Protocol Library.

The class implementation makes use of the
ClientMap class to extract and update information
about individual clients currently connected to the
Client Manager.

ACKNOWLEDGMENT

This work was supported from 2005 to early 2007
by the Smart Internet Technology Cooperative Research
Centre, http://www.smartinternet.com.au.

REFERENCES

[1] J. But, “ANGEL Protocol - CPE/ISP Protocol Document,”
CAIA, Tech. Rep. 070228B, January 2007, http://caia.swin.edu.
au/reports/050204A/CAIA-TR-050204A.pdf.

[2] Alex Agranov, “ACE RADIUS Library,” January 2007, http://
ace-radius.sourceforge.net/.

[3] Open Source Initiative, “The BSD License,” January 2007, http:
//www.opensource.org/licenses/bsd-license.php.

[4] C. Rigney, S. Willens, A. Rubens, and W. Simpson, “Remote
Authentication Dial In User Service (RADIUS),” IETF, RFC
2865, Jun. 2000, http://www.ietf.org/rfc/rfc2865.txt.

CAIA Technical Report 070228E February 2007 page 4 of 4

http://caia.swin.edu.au/reports/050204A/CAIA-TR-050204A.pdf
http://caia.swin.edu.au/reports/050204A/CAIA-TR-050204A.pdf
http://ace-radius.sourceforge.net/
http://ace-radius.sourceforge.net/
http://www.opensource.org/licenses/bsd-license.php
http://www.opensource.org/licenses/bsd-license.php
http://www.ietf.org/rfc/rfc2865.txt

	Introduction
	Flow Classifier Requirements
	Key Restrictions
	System Configuration
	Local Configuration Information
	Database Configuration Information

	Multi-Threaded Design
	Flow Hash Translation
	Development Tools

	ACE RADIUS Stack
	Features of the ACE RADIUS Library
	Important Classes
	Modifications

	Client Manager Code Base
	ClientMap
	ManagerServerStack

	References

