
Light-Weight Modular TCP Congestion Control for
FreeBSD 7

Lawrence Stewart, James Healy
Centre for Advanced Internet Architectures, Technical Report 071218A

Swinburne University of Technology
Melbourne, Australia

lastewart@swin.edu.au, jhealy@swin.edu.au

Abstract— With TCP still responsible for the bulk of
data transfer over IP networks, increasing research effort
is being made to optimise TCP’s behaviour for the increas-
ingly diverse range of potential network conditions. TCP’s
congestion control mechanism is one of the primary areas
of focus for TCP research. In order to facilitate this type
of TCP research using the FreeBSD operating system, we
have developed a light-weight modular congestion control
framework for FreeBSD 7. This greatly lowers the time
required by congestion control algorithm implementors
and researchers to develop concrete implementations of
new algorithms and evaluate them. It also helps to en-
courage congestion control research using an operating
system known for its liberal licence, stability and high
performance networking stack. The current version of the
patch, which this report is based on, is v0.9.1.

Index Terms— TCP, Congestion Control, FreeBSD

I. INTRODUCTION

The evolution of deployment technologies and pro-
tocols used to deliver Internet connectivity and services
has contributed to the increasingly diverse range of paths
present in the wider Internet. With TCP still responsible
for the bulk of data transfer over IP networks [1],
increasing research effort is being made to optimise
TCP’s behaviour to help it better adapt to this diversity.

Simulation plays an important role in the TCP research
and evaluation process, with tools like NS [2] and
OMNeT++ [3] being used to quickly prototype and
investigate the suitability of ideas. After simulation, the
next step is testbed emulation and wider, real-world
testing. This step tends to be orders of magnitude more
difficult than simulation owing to the plethora of hard-
ware and software platforms that run TCP stacks and
the differences in the stack implementations themselves.
It is nonetheless extremely important to observe the
behaviour of proposed changes “in the wild” to ensure
the theory is not usurped by real-world behaviours and

limitations. Researchers are therefore faced with the
challenge of implementing their work outside of the
simulation environment in a real TCP stack.

TCP’s congestion control mechanism is one of the
primary areas of focus for TCP research. The Linux TCP
stack [4] has taken steps in recent years to modularise
the code responsible for implementing the congestion
control behaviour. This significantly reduces the work
required by researchers in order to implement their
new congestion control mechanism in a real operating
system for the purpose of emulation and wider real-world
testing. A simple framework providing hooks into the
relevant parts of the TCP stack means researchers can
spend their time refining their work rather than coming
to terms with the complexity of the TCP/IP stack code, of
which only a small portion relates to congestion control.

The widely used FreeBSD UNIX-like operating sys-
tem provides a mature, stable and customisable platform,
suitable for many tasks. Its academic heritage, liberal li-
cence and renowned TCP/IP stack implementation makes
it an excellent TCP/IP networking research platform.

As part of CAIA’s NewTCP research project [5], a
proposed high-speed TCP congestion control algorithm
(H-TCP [6]) is being implemented in FreeBSD 7 based
solely on the released specification documents. An im-
plementation of the algorithm by the original authors
was already available in Linux as a pluggable congestion
control module to serve as a baseline for comparison of
our “clean-room” implementation.

The only previous work we are aware of implementing
something similar to Linux’s modular congestion control
for FreeBSD is called CC-TCP [7]. It appears to be
overly complicated, heavy-weight and not actively main-
tained. For these reasons we did not consider CC-TCP
to be a viable modular congestion control framework on
which to base our research.

To simplify the NewTCP implementation effort, we

CAIA Technical Report 071218A December 2007 page 1 of 10

mailto:lastewart@swin.edu.au
mailto:jhealy@swin.edu.au

developed a light-weight, modularised congestion con-
trol framework for the FreeBSD 7 TCP/IP stack, which
is the topic of this report. The framework is modelled
on the modular congestion control code found in the
FreeBSD 7 SCTP stack. The current version of the patch,
which this report is based on, is v0.9.1.

The report is structured as follows: section II discusses
how to obtain and use the patch which implements the
framework, section III describes the design and architec-
ture of the framework, section IV outlines how to create
new congestion control modules using the framework,
section V identifies possible further work and section
VI finally concludes the discussion.

II. OBTAINING AND USING THE PATCH

The ultimate goal is to have this work merged into the
FreeBSD source tree. Until such time as this is a reality,
the latest version of the patch can presently be obtained
from the NewTCP project’s website [8].

You must ensure that the FreeBSD source tree is
installed on the system before continuing. Either install it
from the installation media you used to install FreeBSD
or use CVSup [9] to obtain it. Each patch is released
against a particular version of the FreeBSD source tree,
so it is important you obtain the same set of sources
in order to successfully apply the patch file. Check the
header in the patch file for specific information about
the version of FreeBSD sources the patch was created
against. Whilst the current version of the patch is against
the FreeBSD 7 source tree, we suspect minimal effort
would be required to backport the patch to FreeBSD 6
and possibly even FreeBSD 5. However, the following
steps assume you are working on FreeBSD 7.

Download the patch to the local filesystem. To apply
the patch, run the command shown in Listing 1 in a shell
as root. Replace “path to source tree” with the local
filesystem path to the FreeBSD source tree you wish to
patch (typically /usr/src) and replace “path to patch file”
with the path to the downloaded patch file.

Listing 1 Applying the patch to a source tree
/usr/bin/patch -d path to source tree -p0 < path to patch file

Once applied, the kernel needs to be recompiled. Run
the commands shown in Listing 2 in a shell as root. Re-
place “path to source tree” with the local filesystem path
to the FreeBSD source tree you patched in the previous
step. Reboot the system once the kernel has successfully
recompiled and been installed. If you experienced any

problems, refer to [10] for more detailed information on
recompiling the FreeBSD kernel.

Assuming everything has gone well, you now have
a modular congestion control capable FreeBSD system.
Congratulations! The NewReno congestion control algo-
rithm is set as the default algorithm on system boot. It
is now up to you to load in other congestion control
algorithms as kernel modules and use them.

Listing 2 Recompiling the FreeBSD kernel
cd path to source tree
make buildkernel installkernel

III. DESIGN AND ARCHITECTURE

The FreeBSD SCTP [11] implementation set to de-
but in FreeBSD 7 has support for modular congestion
control. This code was used as the model on which our
light-weight modular TCP congestion control framework
was based.

Table I provides a summary of the kernel source files
affected by the framework, quoting file locations relative
to the root of the system source tree (typically /usr/src).

A. A note on TCP fast recovery in FreeBSD

FreeBSD considers Reno style fast recovery [12] and
SACK [13] to be forms of fast recovery from packet
loss. The current FreeBSD implementation enforces that
either form of fast recovery is used, with SACK given
precedence if available. Current best practices state that
fast recovery from packet loss must be used. As such the
fast recovery code has been left in place, and hooks have
been added to modularise access to congestion control
related events outside of fast recovery.

File State
sys/netinet/tcp var.h Modified
sys/netinet/tcp subr.c Modified
sys/netinet/tcp timer.c Modified
sys/netinet/tcp input.c Modified
sys/netinet/tcp output.c Modified
sys/netinet/tcp cc functions.h New
sys/netinet/tcp cc functions.c New

TABLE I
FREEBSD KERNEL SOURCE FILES AFFECTED BY THE

FRAMEWORK AT A GLANCE

CAIA Technical Report 071218A December 2007 page 2 of 10

The net.inet.tcp.newreno sysctl variable allows an ad-
ministrator to enable the improvements to Reno conges-
tion control outlined in RFC3782 [14]. These improve-
ments modified aspects of fast recovery and changed
the way the congestion window is set on exiting fast
recovery. The sysctl variable has been removed in our
patch and the fast recovery improvements are now hard
coded and always used. Setting the congestion window
when exiting fast recovery has been extracted into our
modular framework and can be manipulated by loading
a new TCP congestion control module.

B. Configuring TCP congestion control

The framework defines two new sysctl variables:
net.inet.tcp.cc.available and net.inet.tcp.cc.algorithm.
The net.inet.tcp.cc.available variable provides a read-
only comma separated list of available congestion control
algorithms. The net.inet.tcp.cc.algorithm read-write vari-
able is used to query and specify the default congestion
control algorithm. This variable can only be set to an
algorithm listed in net.inet.tcp.cc.available. In the event
that an algorithm currently set as the default is dereg-
istered, net.inet.tcp.cc.available will be updated accord-
ingly and net.inet.tcp.cc.algorithm will automatically be
reset to NewReno.

Whilst not mandated, it is expected that any algo-
rithms exposing algorithm-specific configuration options
via sysctl will do so under the net.inet.tcp.cc sysctl
tree, using the algorithm name to group options for
each algorithm e.g. if the “nulltcp” congestion control
algorithm exposed a variable named “var1” via sysctl,
it should use the following sysctl hierarchy to do so:
net.inet.tcp.cc.nulltcp.var1

C. Implementation Details

The TCP control block struct defined in tcp var.h
has two new members. The “struct tcp cc functions
*cc functions” member stores a pointer to the set
of functions the connection associated with the con-
trol block will use for congestion control. The “void
*cc data” member can be used to attach malloc’d mem-
ory to the control block as required. It accomodates
the potential need of a congestion control algorithm
requiring additional memory per connection to operate.
It is the algorithm implementor’s responsiblity to man-
age the pointer. Typically, the memory requisition and
release would occur in the algorithm’s init() and deinit()
functions respectively, but this is not a requirement.

Listing 3 shows the definitions from
sys/netinet/tcp cc functions.h which are the basic

Listing 3 Housekeeping function prototypes and global
variable definitions in sys/netinet/tcp cc functions.h
extern STAILQ HEAD(tcp cc head, tcp cc functions) tcp cc list;
extern char tcp cc algorithm[];
extern struct tcp cc functions newreno cc functions;
extern int tcprexmtthresh;

SYSCTL DECL(net inet tcp cc);
void tcp cc init(void);
void tcp cc register algorithm(struct tcp cc functions *add cc);
void tcp cc deregister algorithm(struct tcp cc functions *remove cc);

int newreno init(struct tcpcb *tp);
void newreno cwnd init(struct tcpcb *tp);
void newreno ack received(struct tcpcb *tp);
void newreno post fr(struct tcpcb *tp, struct tcphdr *th);
void newreno after idle(struct tcpcb *tp);
void newreno after timeout(struct tcpcb *tp);
void newreno ssthresh update(struct tcpcb *tp);

housekeeping functions and global variables required
by the framework.

The implementation allows multiple algorithms to be
available within the kernel at any one time by storing
the various tcp cc functions structs in a kernel tail queue
[15] named “tcp cc list”.

The name of the default congestion control algorithm
is stored in the “tcp cc algorithm” string.

The “tcprexmtthresh” variable was originally a stati-
cally defined integer in sys/netinet/tcp input.c. It speci-
fies the number of duplicate acknowledgements required
to trigger loss recovery mechanisms. This variable had
to be modified slightly to make it accessible from other
source files within the framework, requiring it to be
extern’d in a header file.

The framework exposes the new net.inet.tcp.cc sysctl
tree using the “SYSCTL DECL(net inet tcp cc)” decla-
ration. The framework exposes two variables under this
tree, and allows other congestion control algorithms to
hang their sysctl configuration variables from this tree
as well.

Given that a vanilla FreeBSD kernel uses NewReno
as the congestion control algorithm, the NewReno con-
gestion control module has been hardcoded into the
kernel as the default algorithm. This ensures that it is
always available to the system for use as a default. The
newreno cc functions global tcp cc functions struct is
used where references to a default are required within
the TCP stack. The NewReno congestion control re-

CAIA Technical Report 071218A December 2007 page 3 of 10

lated function prototypes are also declared globally so
that other congestion control algorithms can call the
NewReno functions if they require NewReno behaviour
in their algorithms.

The tcp cc init() function is called when the network
stack is being initialised for the first time during system
boot. It initialises the tcp cc list tail queue, adds the
hard-coded NewReno congestion control module to the
tail queue and sets NewReno as the default congestion
control algorithm for the system.

The tcp cc register algorithm() function allows a new
algorithm to be dynamically registered for use. It takes
a pointer to the new algorithm’s tcp cc functions struct
and simply appends the struct pointer to the tcp cc list
tail queue.

The tcp cc deregister algorithm() function allows a
currently registered algorithm to be dynamically re-
moved from the system. It takes a pointer to the existing
algorithm’s tcp cc functions struct. The deregistration
process is more involved than that of registration, be-
cause current TCP flows could be using the algorithm
for their congestion control. The algorithm being dereg-
istered is first removed from the tcp cc list tail queue
to ensure no new TCP flows use the algorithm. If the
algorithm is set as the system default, the default is reset
to NewReno. Finally, every TCP control block is checked
and any found to be using the algorithm are reset to use
the NewReno congestion control module. This final step
does not wait for a flow to be in any particular state, so
the switch back to NewReno will likely occur while the
flow is actively transferring data which will change the
flow’s dynamics inflight.

Listing 4 shows the definition of the fundamental
tcp cc functions struct. Each congestion control algo-
rithm is required to define a single instance of this struct.

Algorithms are uniquely identified by their ASCII
“name” field, with the maximum length restricted to
TCP CC MAX ALGORITHM NAME LEN characters
(defined in sys/netinet/tcp var.h).

The “entries” member forms the link used to join
tcp cc functions structs together in a tail queue. The pro-
grammer is not required to maintain this struct member
at all.

The remainder of the tcp cc functions struct defines
function pointers which are called at appropriate places
within the TCP stack for algorithm implementors to
utilise. Appropriate checks are in place within the TCP
stack so that none of the functions must be implemented.
This allows the algorithm developer to implement the
minimal set of functions required.

Listing 4 Definition of the tcp cc functions struct in
sys/netinet/tcp var.h
struct tcp cc functions {
char name[TCP CC MAX ALGORITHM NAME LEN];
int (*init) (struct tcpcb *tp);
void (*deinit) (struct tcpcb *tp);
void (*tcp cwnd init) (struct tcpcb *tp);
void (*tcp ack received) (struct tcpcb *tp);
void (*tcp pre fr) (struct tcpcb *tp);
void (*tcp post fr) (struct tcpcb *tp, struct tcphdr *th);
void (*tcp after idle) (struct tcpcb *tp);
void (*tcp after timeout) (struct tcpcb *tp);
STAILQ ENTRY(tcp cc functions) entries;
};

The init() function is called during the initialisation
of a TCP control block for a new connection. Any
per-flow initialisation required by the congestion control
algorithm can be performed here. The function should
return 0 on success, or greater than zero on failure.
Returning a non-zero value from the init() function will
result in the connection being aborted. A pointer to the
newly created TCP control block struct is passed into
the init() function in case access to the struct’s data is
required.

The deinit() function is called during the destruction of
a TCP control block at the terminiation of a connection.
Any per-flow deinitialisation required by the congestion
control algorithm can be performed here. A pointer to
the TCP control block struct being destroyed is passed
into the deinit() function. Releasing malloc’d memory
referenced by the TCP control block’s cc data member
would typically be performed in this function.

The tcp cwnd init() function is called to initialise the
congestion window at the very beginning of a connec-
tion. If the function is undefined, the initial congestion
window is set to the maximum segment size (MSS).

The tcp ack received() function is called on the receipt
of each TCP acknowledgement, except when in fast
recovery mode.

The tcp pre fr() function is called on receipt of a third
duplicate ACK, prior to entering fast recovery mode.
This allows pre fast recovery state to be recorded.

The tcp post fr() function is called when a connection
has recovered from packet loss and exits fast recovery
mode.

The tcp after idle() function is called before sending
any new data after a period of idleness experienced by
a connection.

CAIA Technical Report 071218A December 2007 page 4 of 10

The tcp after timeout() function is called each time
the TCP retransmit timer fires.

IV. DEVELOPING NEW CONGESTION CONTROL

ALGORITHMS

With the knowledge gained from the previous section,
we can now demonstrate the creation of a very simple
congestion control algorithm as a loadable kernel mod-
ule. You may wish to refer to [16] for a more in depth
discussion on programming the FreeBSD kernel.

The congestion control algorithm we are going to
create is named NullTCP. It aims to keep the congestion
window equal to MSS, which is useful for debugging
purposes and not much else. The makefile and source
code are included in Appendix A and B respectively.
The makefile contents should be placed into a file named
“Makefile” and the source code should be placed into
a file named “nulltcp.c”, both in the same directory.
Assuming the FreeBSD 7 source tree exists at /usr/src,
simply running “make” on the command line in the
directory containg both files should compile and link the
module, producing “nulltcp.ko” in the directory.

The noteworthy aspects of the NullTCP implementa-
tion are as follows:

• Using a kernel module to implement the algorithm
simplifies the development and use of the software.

• The makefile specifies an optional CFLAG to in-
clude debugging features in the module at compile
time. This provides a very quick way to access
debugging information when required, as it simply
involves a recompilation and reload of the module.

• sys/netinet/tcp cc functions.h is included to gain
access to the housekeeping functions and variables
defined therein.

• A function prototype is defined for each func-
tion pointer we wish to overwrite in the NullTCP
tcp cc functions struct.

• A tcp cc functions struct instance is initialised with
the algorithm name and the function pointers we
wish to implement. For demonstration purposes,
NullTCP implements all of the available function
pointers.

• On module load, tcp cc register algorithm() is
called and the pointer to nulltcp cc functions is
passed in. This registers the NullTCP module with
the framework and makes it available for use.

• On module unload, tcp cc deregister algorithm() is
called and the pointer to nulltcp cc functions is
passed in. This deregisters the NullTCP module

from the framework and makes it unavailable for
further use.

Note that had we not wanted to implement all of the
function pointers in the NullTCP tcp cc functions struct,
we could have explicitly set the pointers equal to NULL
rather than implementing an empty function.

V. FURTHER WORK

Further verification and testing of the framework is
required in order to be sure the implementation has not
adversely affected FreeBSD’s TCP stack in any notice-
able way compared to a vanilla kernel. The NewReno
congestion control algorithm, now adapted for use in
the framework, also needs to be tested against a vanilla
FreeBSD 7 kernel to ensure the algorithm is behaving
as it did previously.

This additional verification and testing of the frame-
work will lead towards getting the patch integrated
into the mainline FreeBSD source tree. A consultation
process with the FreeBSD kernel development team will
be undertaken in order to work towards this goal.

A nice-to-have feature that should probably be added
to the framework is the ability to override the system
default congestion control algorithm using a socket op-
tion at runtime. The Linux modular congestion control
framework offers this possibility, which is particularly
useful for simplifying testing procedures with software
that supports use of the option e.g. Iperf with the
congestion control algorithm selection patch [17].

Using the framework, it would also be useful to begin
implementing some of the other TCP congestion control
algorithms that exist.

VI. CONCLUSION

Research into TCP congestion control is ongoing, and
requires researchers to experiment with real networking
hardware and software in addition to the more abstract
algorithms themselves.

We have implemented a light-weight modular con-
gestion control framework for the FreeBSD 7 operating
system’s TCP stack. Whilst the current version of the
patch is against the FreeBSD 7 source tree, we suspect
minimal effort would be required to backport the patch
to FreeBSD 6 and possibly even FreeBSD 5.

The framework allows congestion control algorithms
to be implemented as dynamically loadable kernel mod-
ules, which are simpler to develop, debug and distribute.
This significantly reduces the amount of work required
by congestion control implementors and researchers
to evaluate algorithms using FreeBSD. It also makes

CAIA Technical Report 071218A December 2007 page 5 of 10

FreeBSD a more useful platform for congestion control
research than it was previously.

More testing and verification work is required to fully
ensure the framework does not noticeably impede or
alter the operation of the FreeBSD TCP stack. This is
currently ongoing work.

VII. ACKNOWLEDGMENTS

This report has been made possible in part by a grant
from the Cisco University Research Program Fund at
Community Foundation Silicon Valley.

REFERENCES

[1] M. Fomenkov, K. Keys, D. Moore, K. Claffy, “Longitudinal
study of Internet traffic in 1998-2003,” in Winter
International Symposium on Information and Communication
Technologies (WISICT), Cancun, Mexico, January 2004.
[Online]. Available: http://www.caida.org/publications/papers/
2003/nlanr/nlanr overview.pdf%

[2] “The Network Simulator - ns-2,” Accessed 19 Nov 2007.
[Online]. Available: http://www.isi.edu/nsnam/ns/

[3] “OMNeT++ Community Site,” Accessed 19 Nov 2007.
[Online]. Available: http://www.omnetpp.org/

[4] I. McDonald, R. Nelson, “Congestion control advancements
in Linux,” in linux.conf.au 2006, Dunedin, New Zealand,
January 2006. [Online]. Available: http://wand.net.nz/∼iam4/
papers/congestion lca06 paper.pdf

[5] “The NewTCP Project,” May 2007, Accessed 19 Nov 2007.
[Online]. Available: http://caia.swin.edu.au/urp/newtcp

[6] D. Leith, R. Shorten, “H-TCP: TCP for high-speed and
long-distance networks,” in Second International Workshop
on Protocols for Fast Long-Distance Networks, Argonne,
Illinois USA, February 2004. [Online]. Available: http:
//www.hamilton.ie/net/htcp3.pdf

[7] W. Xiuchao, “Congestion Control TCP,” November 2005,
Accessed 19 Nov 2007. [Online]. Available: http://www.comp.
nus.edu.sg/∼wuxiucha/research/reactive/cctcp/index.htm%l

[8] “NewTCP project tools,” May 2007, Accessed 19 Nov
2007. [Online]. Available: http://caia.swin.edu.au/urp/newtcp/
tools.html

[9] The FreeBSD Project, “Using CVSup,” Accessed 19 Nov
2007. [Online]. Available: http://www.freebsd.org/doc/en US.
ISO8859-1/books/handbook/cvsup.html

[10] ——, “Building and Installing a Custom Kernel,” Accessed 19
Nov 2007. [Online]. Available: http://www.freebsd.org/doc/en
US.ISO8859-1/books/handbook/kernelconfig%-building.html

[11] R. Stewart, Q. Xie, K. Morneault, C. Sharp, H. Schwarzbauer,
T. Taylor, I. Rytina, M. Kalla, L. Zhang and V. Paxson, “RFC
2960: Stream Control Transmission Protocol,” October 2000.
[Online]. Available: http://www.ietf.org/rfc/rfc2960.txt

[12] M. Allman, V. Paxson and W. Stevens, “RFC 2581:
TCP Congestion Control,” April 1999. [Online]. Available:
http://www.ietf.org/rfc/rfc2581.txt

[13] M. Mathis, J. Mahdavi, S. Floyd and A. Romanow, “RFC
2018: TCP Selective Acknowledgement Options,” October
1996. [Online]. Available: http://www.ietf.org/rfc/rfc2018.txt

[14] “RFC 3782: The NewReno Modification to TCP’s Fast
Recovery Algorithm,” April 2004. [Online]. Available: http:
//www.ietf.org/rfc/rfc3782.txt

[15] FreeBSD Hypertext Man Pages, “QUEUE,” January 1994,
Accessed 19 Nov 2007. [Online]. Available: http://www.
freebsd.org/cgi/man.cgi?query=queue&sektion=3

[16] L. Stewart, J. Healy, “An Introduction to FreeBSD 6
Kernel Hacking,” CAIA, Tech. Rep. 070622A, July 2007.
[Online]. Available: http://caia.swin.edu.au/reports/070717B/
CAIA-TR-070717B.pdf

[17] A. Castellani, “Re: Usermode per-flow selection of
congestion control algorithm,” March 2006, Accessed 19
Nov 2007. [Online]. Available: http://archive.ncsa.uiuc.edu/
lists/iperf-users/mar06/msg00019.html

CAIA Technical Report 071218A December 2007 page 6 of 10

http://www.caida.org/publications/papers/2003/nlanr/nlanr_overview.pdf%
http://www.caida.org/publications/papers/2003/nlanr/nlanr_overview.pdf%
http://www.isi.edu/nsnam/ns/
http://www.omnetpp.org/
http://wand.net.nz/~iam4/papers/congestion_lca06_paper.pdf
http://wand.net.nz/~iam4/papers/congestion_lca06_paper.pdf
http://caia.swin.edu.au/urp/newtcp
http://www.hamilton.ie/net/htcp3.pdf
http://www.hamilton.ie/net/htcp3.pdf
http://www.comp.nus.edu.sg/~wuxiucha/research/reactive/cctcp/index.htm% l
http://www.comp.nus.edu.sg/~wuxiucha/research/reactive/cctcp/index.htm% l
http://caia.swin.edu.au/urp/newtcp/tools.html
http://caia.swin.edu.au/urp/newtcp/tools.html
http://www.freebsd.org/doc/en_US.ISO8859-1/books/handbook/cvsup.html
http://www.freebsd.org/doc/en_US.ISO8859-1/books/handbook/cvsup.html
http://www.freebsd.org/doc/en_US.ISO8859-1/books/handbook/kernelconfig% -building.html
http://www.freebsd.org/doc/en_US.ISO8859-1/books/handbook/kernelconfig% -building.html
http://www.ietf.org/rfc/rfc2960.txt
http://www.ietf.org/rfc/rfc2581.txt
http://www.ietf.org/rfc/rfc2018.txt
http://www.ietf.org/rfc/rfc3782.txt
http://www.ietf.org/rfc/rfc3782.txt
http://www.freebsd.org/cgi/man.cgi?query=queue&sektion=3
http://www.freebsd.org/cgi/man.cgi?query=queue&sektion=3
http://caia.swin.edu.au/reports/070717B/CAIA-TR-070717B.pdf
http://caia.swin.edu.au/reports/070717B/CAIA-TR-070717B.pdf
http://archive.ncsa.uiuc.edu/lists/iperf-users/mar06/msg00019.html
http://archive.ncsa.uiuc.edu/lists/iperf-users/mar06/msg00019.html

Appendix A: NullTCP Makefile

SRCS=nulltcp.c
KMOD=nulltcp

Uncomment this define to enable debugging options
CFLAGS+=-g -DNULLTCP_DEBUG

.include <bsd.kmod.mk>

Appendix B: NullTCP source code

/*
* Copyright (c) 2007, Centre for Advanced Internet Architectures

* Swinburne University of Technology, Melbourne, Australia

* (CRICOS number 00111D).

*
* This software was developed by James Healy <jhealy@swin.edu.au>

* and Lawrence Stewart <lastewart@swin.edu.au>

*
* All rights reserved.

*
* Redistribution and use in source and binary forms, with or without

* modification, are permitted provided that the following conditions

* are met:

* 1. Redistributions of source code must retain the above copyright

* notice, this list of conditions and the following disclaimer.

* 2. Redistributions in binary form must reproduce the above copyright

* notice, this list of conditions and the following disclaimer in the

* documentation and/or other materials provided with the distribution.

* 3. The names of the authors, the "Centre for Advanced Internet Architectures"

* and "Swinburne University of Technology" may not be used to endorse

* or promote products derived from this software without specific

* prior written permission.

*
* THIS SOFTWARE IS PROVIDED BY THE AUTHORS AND CONTRIBUTORS ‘‘AS IS’’ AND

* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE

* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE

* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE LIABLE

* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL

* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS

* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)

* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT

* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY

* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF

* SUCH DAMAGE.

*/

//**
// nulltcp
//
// A TCP cc algorithm that is designed to keep the cwnd at 1 MSS.
// Useful for debugging purposes, awful in the real world.
//
// Date: November 2007
//**

#include <sys/param.h>
#include <sys/kernel.h>
#include <sys/systm.h>
#include <sys/module.h>
#include <sys/socketvar.h>
#include <netinet/tcp_cc_functions.h>

CAIA Technical Report 071218A December 2007 page 7 of 10

#define MODNAME "nulltcp - Null TCP congestion control"
#define MODVERSION "1.0"

int nulltcp_init(struct tcpcb *tp);
void nulltcp_deinit(struct tcpcb *tp);
void nulltcp_cwnd_init(struct tcpcb *tp);
void nulltcp_ack_received(struct tcpcb *tp);
void nulltcp_pre_fr(struct tcpcb *tp);
void nulltcp_post_fr(struct tcpcb *tp, struct tcphdr *th);
void nulltcp_after_idle(struct tcpcb *tp);
void nulltcp_after_timeout(struct tcpcb *tp);

struct tcp_cc_functions nulltcp_cc_functions = {
.name = "nulltcp",
.init = nulltcp_init,
.deinit = nulltcp_deinit,
.tcp_cwnd_init = nulltcp_cwnd_init,
.tcp_ack_received = nulltcp_ack_received,
.tcp_pre_fr = nulltcp_pre_fr,
.tcp_post_fr = nulltcp_post_fr,
.tcp_after_idle = nulltcp_after_idle,
.tcp_after_timeout = nulltcp_after_timeout

};

int
nulltcp_init(struct tcpcb *tp)
{
#ifdef NULLTCP_DEBUG
printf("initialising tcp connection 0x%x with nulltcp congestion control\n",

(unsigned int)tp);
#endif
return 0;

}

void
nulltcp_deinit(struct tcpcb *tp)
{
#ifdef NULLTCP_DEBUG
printf("deinitialising tcp connection 0x%x with nulltcp congestion control\n",

(unsigned int)tp);
#endif
}

void
nulltcp_cwnd_init(struct tcpcb *tp)
{
#ifdef NULLTCP_DEBUG
printf("Connection 0x%x nulltcp_cwnd_init()\n", (unsigned int)tp);

#endif
tp->snd_cwnd = tp->t_maxseg;

}

void
nulltcp_ack_received(struct tcpcb *tp)
{
#ifdef NULLTCP_DEBUG
printf("Connection 0x%x nulltcp_ack_received()\n", (unsigned int)tp);

#endif
}

void
nulltcp_pre_fr(struct tcpcb *tp)

CAIA Technical Report 071218A December 2007 page 8 of 10

{
#ifdef NULLTCP_DEBUG
printf("Connection 0x%x nulltcp_pre_fr()\n", (unsigned int)tp);

#endif
}

void
nulltcp_post_fr(struct tcpcb *tp, struct tcphdr *th)
{
#ifdef NULLTCP_DEBUG
printf("Connection 0x%x nulltcp_post_fr()\n", (unsigned int)tp);

#endif
nulltcp_cwnd_init(tp);

}

void
nulltcp_after_idle(struct tcpcb *tp)
{
#ifdef NULLTCP_DEBUG
printf("Connection 0x%x nulltcp_after_idle()\n", (unsigned int)tp);

#endif
}

void
nulltcp_after_timeout(struct tcpcb *tp)
{
#ifdef NULLTCP_DEBUG
printf("Connection 0x%x nulltcp_after_timeout()\n", (unsigned int)tp);

#endif
}

static int
init_module(void)
{
tcp_cc_register_algorithm(&nulltcp_cc_functions);

uprintf("Loaded: %s v%s\n", MODNAME, MODVERSION);

return 0;
}

static int
deinit_module(void)
{
tcp_cc_deregister_algorithm(&nulltcp_cc_functions);

uprintf("Unloaded: %s v%s\n", MODNAME, MODVERSION);

return 0;
}

static int
nulltcp_load_handler(module_t mod, int what, void *arg)
{
switch(what)
{
case MOD_LOAD:
return init_module();
break;

case MOD_QUIESCE:
case MOD_SHUTDOWN:
return deinit_module();

CAIA Technical Report 071218A December 2007 page 9 of 10

break;

case MOD_UNLOAD:
return 0;
break;

default:
return EINVAL;
break;

}
}

static moduledata_t nulltcp_mod =
{
"nulltcp",
nulltcp_load_handler,
NULL

};

DECLARE_MODULE(nulltcp, nulltcp_mod, SI_SUB_KLD, SI_ORDER_ANY);

CAIA Technical Report 071218A December 2007 page 10 of 10

	Introduction
	Obtaining and Using the Patch
	Design and Architecture
	A note on TCP fast recovery in FreeBSD
	Configuring TCP congestion control
	Implementation Details

	Developing New Congestion Control Algorithms
	Further Work
	Conclusion
	Acknowledgments
	References

