
VTun UDP Packet Dissector for Wireshark/Ethereal
Jason But, Adam Black

Centre for Advanced Internet Architectures, Technical Report 080111A
Swinburne University of Technology

Melbourne, Australia
jbut@swin.edu.au, adamblack@swin.edu.au

Abstract— When testing new protocol implementations,
VTun can be used to build large virtual networks with
multiple hops and paths using a limited amount of hard-
ware. However, it is often necessary to capture and analyse
generated traffic to ensure that the protocol is functioning
as designed. Capturing tunnelled network traffic results in
capturing the tunneling IP/UDP packets and requires an
effort to decode and extract the encapsulated IP packets.
In this paper we present a patch for Wireshark version
0.99.7 that can automatically decode and further process
VTun encapsulated packets to allow deeper inspection into
the IP packets being carried within the tunnel.

I. INTRODUCTION

When testing the implementation of network pro-
tocols, it is often convenient to run these protocols
over a large network. In this manner it is possible to
examine the protocol functionality under a variety of
different network conditions including multiple hops,
congested paths, bandwidth limited paths and various
routing conditions. However, it can be inconvenient to
establish and maintain a large testbed on a long-term
basis. If performance is not an issue, one alternative is to
tunnel traffic via multiple virtual interfaces on different
computers. By correctly setting up routing tables and
firewall rules, it is possible to establish a complex
network environment using minimal hardware – as long
as performance is not a key measure for testing purposes.

The problem with tunnelling traffic over virtual inter-
faces comes when we are capturing the network traffic
for analysis purposes. If we capture traffic on the phys-
ical interface, the packets of interest are encapsulated
within the tunnelling protocol packets. This means that
we need to decode the tunnelling layer to examine the
actual IP packets being transmitted through the tunnel.

VTun [1] is a simple Unix based tunnelling solution
that can be used to establish non-encrypted IP tunnels
over physical interfaces. For experimental purposes, not
encrypting the data can be useful as it minimises pro-
cessing load and simplifies further packet decoding.

Wireshark [2] (formerly Ethereal) is a graphical net-
work protocol analyser for both traffic trace files and
live network capture. In this Technical Report we present
and discuss our Wireshark decoding module to decode
and process VTun encapsulated packets to enable traffic
analysis of IP network traffic transmitted over these
tunnels. Our patch has been generated against Wireshark
version 0.99.7 only but the decoder module source code
has been successfully tested with version 0.99.6 and
Ethereal version 0.99.0.

II. VTUN IN A NETWORK TESTBED

When using tunnels to establish a large virtual network
testbed, we are typically not interested in securing traffic
between two sites, but rather looking to establish mul-
tiple virtual network point-to-point links that can then
be built into a network environment through the use of
routing tables. Using IP tunnels in this manner allows
us to examine the workings of IP-based protocols over
a variety of different network conditions.

III. DECODING ENCAPSULATED VTUN PACKETS

The module discussed in this report was originally
developed as part of the SONATA project [3], to allow
us to examine the multi-homing functionality of SCTP
[4] in a large network testbed. Since this project was to
develop a NAT implementation for SCTP, it was imper-
ative that we be able to capture and analyse the SCTP
packets both before and after passing through the NAT.
In this case we need to be able to capture SCTP traffic
on all the virtual interfaces during each experimental
run. Unfortunately, the traffic captured on the physical
interface would consist of the VTun UDP packets, with
the encapsulated IP packet contained within the UDP
packet payload.

To simplify analysis and development of our software,
we needed instant feedback on the encapsulated pro-
tocol, we decided to develop a decoding module for
VTun within the framework of Wireshark [2]. When

CAIA Technical Report 080111A January 2008 page 1 of 5

mailto:jbut@swin.edu.au
mailto:adamblack@swin.edu.au


UDP Header 0x2000 / 
0x4000 NULL / Padded

UDP Payload

0 bytes END2 bytes

VTun Keep-alive

UDP Header Len
(IP Payload) IP Payload

UDP Payload

0 bytes END2 bytes

VTun data

UDP Header

UDP Header

Fig. 1. VTun Packet Structure

Wireshark is compiled with the VTun decoder module,
the Wireshark application will automatically treat UDP
packets on port 5000 as VTun encoded packets and –
if the packets are encapsulated without encryption –
decode and process the VTun payload as an IP packet for
further processing. This enables all tunnelled traffic to be
captured and decoded as if no tunnels were in place.

A. VTun Packet Format

VTun uses a client/server model where the client
establishes a VTun connection with the server. Once any
configured authentication takes place, a virtual interface
is established at both ends of the tunnel and all IP
packets destined for the tunnel are encapsulated within
a UDP packet sent between the two physical hosts. At
the server side the UDP port number is typically 5000
(configurable) while at the client side the UDP port
number is randomly allocated.

We will further examine the structure of un-encrypted
VTun packets which are sent via the UDP protocol.
VTun data packets contain the encapsulated IP packet
inside the UDP payload. The first two bytes of the
payload contain the length of the IP packet. The IP
packet itself begins at the 3rd byte of the payload field
and continues until the end of the VTun packet.

Depending on your VTun configuration, there may
also be VTun keep-alive packets sent between the client
and server. These packets contain either 0x2000 or
0x4000 in the length field. See Figure 1 for an example.

B. Wireshark Module Implementation

All source code resides in “packet-vtun.c” – the
majority of this is boiler-plate code to allow successful
communication with the main Wireshark application.
Key implementation aspects are:

1) VTunRegisterHandoff(): Here we register our
VTunDissect() function to handle UDP traffic on port
5000. We also locate the IP dissector plugin which is
later used to dissect VTun packets.

2) VTunDissect(): This function handles the dissec-
tion of VTun packets. The first step is to check the
length field which appears in the first 2 bytes of the UDP
payload. If the length matches the number of remaining
bytes then the IP dissector is called on the payload
of the UDP packet with the first 2 bytes stripped off.
If the length field is invalid then we test the length
value against 0x2000 and 0x4000. If one of these val-
ues is matched it means the VTun packet is a keep-
alive/synchronisation message and shouldn’t be dissected
any further. If the length value does not meet any of the
above criteria the packet is marked as unrecognisable.

More details about creating a Wireshark dissector
plugin can be found in the Wireshark online manual [5].

IV. INSTALLATION

The module is available for download at
http://caia.swin.edu.au/urp/sonata/
downloads.html. The download file is a gzipped
tarball consisting of this document and a patch to run
against the Wireshark source code. Instructions for
installation follow.

A. Requirements

To compile the VTun plugin you will require:

• UNIX-like operating system
• Wireshark source code 0.99.7 [2]
• VTun patch for wireshark

The patch must be manually applied to the source-
code and cannot be applied to a previous or new pack-
aged install, or to any pre-compiled binary installation.
If you already have Wireshark installed you must unin-
stall your current version prior to installing the patched
version.

The patch provided as part of this download will
only cause the VTun decoder module to be com-
piled under a Unix-like operating system because the
patch does not touch or create the required nmake
files for compiling under Windows. If you need to

CAIA Technical Report 080111A January 2008 page 2 of 5

http://caia.swin.edu.au/urp/sonata/downloads.html
http://caia.swin.edu.au/urp/sonata/downloads.html


compile the patch for Windows, please read the doc-
umentation file included with the Wireshark source
(wireshark-src/doc/README.plugins)

The provided patch has been generated against version
0.99.7 of Wireshark and will only work if you download
this version of the Wireshark source code. The actual
VTun decoder module should compile correctly against
any Wireshark/Ethereal version but you may need to
manually modify the patch first. The VTun decoder
module has been successfully compiled with Wireshark
versions 0.99.6 and 0.99.7 and Ethereal version 0.99.0
on both FreeBSD and Linux platforms.

B. Compiling the VTun Module into Wireshark/Ethereal

As previously noted, all the source code required to
patch Wireshark to support VTun decoding is contained
within the file “plugins/vtun/packet-vtun.c”.
This code should compile against other versions of Wire-
shark. The provided patch is listed to only work against
Wireshark version 0.99.7 because of the modifications
it makes to existing files to ensure that the new VTun
module gets compiled and installed.

The steps listed below assume that you have down-
loaded the Wireshark 0.99.7 source code.

1) Extract the wireshark-0.99.7 source into a direc-
tory in which you have write privileges

2) Copy the VTun wireshark patch
(wireshark vtun patch.sh) into the
wireshark-0.99.7/ base directory

3) Enter the wireshark-0.99.7 directory and execute:
sh wireshark_vtun_patch.sh

Check the patch output carefully, all the files
should have been patched successfully. If you see
any messages saying ‘Hunk Failed’ you will need
to skip to Section IV-C before proceeding with
these instructions.

4) Now execute:
./autogen.sh
./configure
make

autogen.sh must be run to ensure that the
configure script is regenerated. Whilst running
either autogen.sh or configure, you may be
prompted to install some required dependencies for
Wireshark. If so, please install the required pack-
ages and then re-run autogen.sh/configure

5) To install the Wireshark/Ethereal binaries in your
system run as the root user:

make install

Alternatively, if you are using FreeBSD and wish to
install Wireshark from the ports tree as a registered
package, you can use the following steps:

1) Change into the proper port directory
/usr/ports/net/wireshark

2) Download the Wireshark source code and patch
with FreeBSD specific patches

make patch

3) Change into the compile directory (where XXX is
the current Wireshark version number)

cd work/wireshark-XXX

4) Follow steps 2, 3 and 4 above to install the patch
and modify the source code. For step 4 you need
only execute the autogen.sh script since the
FreeBSD ports build will run configure for
you. This step is required otherwise Ports will
use the original configure script. Dependencies
should not be an issue since the ports dependency
tree will have ensured that everything is already
installed

5) Change back to the port directory and build/install
Wireshark

cd ../..
make install

The FreeBSD Ports system will automatically re-
generate and execute the “configure” script
prior to building and installing Wireshark

You should now have a working installation of Wire-
shark/Ethereal with the required plugin for decoding
unencrypted UDP VTun packets. To run Wireshark or
Ethereal simply type ‘wireshark’ or ‘ethereal’
at the command prompt. The VTun module should be
automatically loaded upon launch, to check if the VTun
module compiled successfully click the ‘Help’ menu,
‘About’ and select the ‘Plugins’ tab. Scroll down the
list to check for the vtun.so dissector.

If Wireshark detects UDP traffic on port 5000 it will
call the VTun packet dissector which will recursively
dissect the packet. Under Ethereal the VTun payload
must be manually dissected by traversing the Protocol
Hierarchy tree.

C. Manually Patching Ethereal or Wireshark Source

The provided patch is designed to work against version
0.99.7 of the Wireshark source code. If you are compil-
ing against a different version of Wireshark or Ethereal
– or your received a ‘Hunk Failed’ error message during

CAIA Technical Report 080111A January 2008 page 3 of 5



wireshark vtun patch.sh execution – you will
need to manually patch the source code.

When executing wireshark vtun patch.sh, the
first files created/modified are the the VTun module
source code files, these files should be generated regard-
less of the version of Wireshark/Ethereal you are patch-
ing. Once the source code has been added, the remaining
patches are to “Makefile.am”, “configure.in”
and “plugins/Makefile.am”. These changes are
required to ensure that running configure/make will
build Wireshark/Ethereal with the VTun module.

Patching the remaining three files may not work
for other versions of Wireshark/Ethereal. The are two
possible means of patching these files:

1) Read the doc/README.plugins file in the
Wireshark/Ethereal base directory and locate the
section outlining the necessary modifications
to “Makefile.am”, “configure.in” and
“plugins/Makefile.am”. This should only
be a simple one line addition to each file

2) Alternatively, a ‘cleaner’ solution would require
editing the wireshark vtun patch.sh file
and modifying the line numbers that describe
where to patch the specified files. This technique
is for sufficiently advanced users and will not be
covered in any more detail

ACKNOWLEDGEMENTS

The development of the Wireshark VTun decoding
module was completed as part of the SONATA [3]
project and was made possible through the funding of
Cisco.

REFERENCES

[1] Maxim Krasnyansky, “VTun – Virtual Tunnels over TCP/IP
networks,” Viewed 02 January 2008, http://vtun.sourceforge.net/.

[2] Wireshark, “Wireshark,” Viewed 02 January 2008, http://www.
wireshark.org/download/src/all-versions/.

[3] CAIA, “SONATA – SCTP Over NAT Adaptation,” Viewed 02
January 2008, http://caia.swin.edu.au/urp/sonata.

[4] Randall Stewart, “Stream Control Transmission Protocol
(SCTP),” Viewed 02 January 2008, http://www.sctp.org.

[5] Wireshark, “Wireshark Developers Documentation - Adding a
basic dissector,” Viewed 15 January 2008, http://www.wireshark.
org/docs/wsdg html chunked/ChDissectAdd.html.

APPENDIX A

Figures 2 and 3 show screenshots of Wireshark 0.99.7
after opening a traffic trace containing SCTP traffic over
an unencrypted VTun tunnel. Figure 2 shows the default
Wireshark output without the VTun module loaded.
In this case we see only the original captured traffic.
Wireshark decodes the IP/UDP header and displays the
VTun encapsulating packet information but does not
decode the encapsulated IP/SCTP packets.

Figure 3 show Wireshark output with the the VTun
module loaded. In this case the protocol heirarchy tree
automatically shows the UDP payload as a VTun unen-
crypted tunnel and further examination of the payload
shows the details of the encapsulated IP/SCTP packets.
Further in the summary window showing packet infor-
mation, the encapsulated IP/SCTP packet information
is summarised as opposed to the encapsulating IP/UDP
VTun packet.

CAIA Technical Report 080111A January 2008 page 4 of 5

http://vtun.sourceforge.net/
http://www.wireshark.org/download/src/all-versions/
http://www.wireshark.org/download/src/all-versions/
http://caia.swin.edu.au/urp/sonata
http://www.sctp.org
http://www.wireshark.org/docs/wsdg_html_chunked/ChDissectAdd.html
http://www.wireshark.org/docs/wsdg_html_chunked/ChDissectAdd.html


Fig. 2. Wireshark without VTun plugin enabled

Fig. 3. Wireshark with VTun plugin enabled

CAIA Technical Report 080111A January 2008 page 5 of 5


	Introduction
	VTun in a Network Testbed
	Decoding Encapsulated VTun Packets
	VTun Packet Format
	Wireshark Module Implementation
	VTunRegisterHandoff()
	VTunDissect()


	Installation
	Requirements
	Compiling the VTun Module into Wireshark/Ethereal
	Manually Patching Ethereal or Wireshark Source

	References

