
Using the Endace DAG 3.7GF Card With FreeBSD
7.0

Amiel Heyde, Lawrence Stewart
Centre for Advanced Internet Architectures, Technical Report 080507A

Swinburne University of Technology
Melbourne, Australia

amiel@swin.edu.au, lastewart@swin.edu.au

Abstract—The Centre for Advanced Internet Architec-
tures (CAIA) recently acquired 4 Endace DAG 3.7GF high
performance capture cards. Where possible, the centre’s
standard experimental environment utilises the FreeBSD
operating system and commodity PC hardware to perform
experimental research. This report details how to use DAG
3.7GF capture cards with FreeBSD 7.0 in a variety of
commonly required experimental network configurations
used in day-to-day research.

I. INTRODUCTION

High performance packet capture and time stamping
is a common requirement for experimental network
research. A number of options exist, ranging in price,
accuracy, scalability and features.

Endace [1] manufacture the DAG [2] range of hard-
ware packet capture cards, which are one such option
for researchers.

This report specifically focuses on documenting the
use of the DAG 3.7GF dual-port PCI-X gigabit Eth-
ernet network monitoring card with the FreeBSD 7.0
operating system. The report describes the procedure
for configuring a capture system, documents possible
usage scenarios for the cards and outlines the appropriate
configuration required to achieve each scenario.

This report is not a substitute for the documentation
provided by Endace in their software distribution.

II. CONFIGURATION

Being a specialised piece of hardware, the DAG 3.7GF
card requires some non-standard configuration in order
to function correctly. Before continuing with this guide,
ensure you have a machine that meets the following
requirements:

• Has a spare 3.3V PCI or PCI-X (preferred) expan-
sion slot

• Has a basic install of FreeBSD 7.0-RELEASE in-
cluding all system sources

The driver and software configuration process is a
bit tedious, and does not utilise the FreeBSD package
management system. This makes it difficult to manage
the installation, upgrading and removal of the DAG
drivers and software. To remedy this, we created a
FreeBSD port to facilitate this. We aim to have the
port included in the official FreeBSD ports tree. In the
meantime, the port can be obtained from [3]. At the time
of writing, the current version of the port is v1.0.

The steps required to configure a machine that has
met the previously stated minimum requirements are as
follows:

• Extract the dag3 port directory e.g. tar -xzvf
dag3-port.tar.gz

• Change directory into the port e.g. cd
dag3-port-1.0

• Install the port:

– With PCAP support: make install
– Without PCAP support: make
WITHOUT_PCAP=1 install

After the installation has completed, you will be
instructed to restart the machine. This is required to
allow the low level kernel modules and loader tunables
configured during the install to work correctly.

Assuming everything went well, running the
dagthree utility from the command line should show
the current configuration of the DAG card installed in
the system.

If you built the dag3 port with libpcap support, you
can test whether applications that use libpcap have DAG
support by running dagwatchdog -p &, followed by
tcpdump -ni dag0. The dagwatchdog command
engages the fail-safe relays that allow the card to capture
traffic.

CAIA Technical Report 080507A May 2008 page 1 of 4

mailto:amiel@swin.edu.au
mailto:lastewart@swin.edu.au

A. Tuning
The dagmem kernel module is installed by the dag3

port. It uses the dagmem_size loader tunable in
/boot/loader.conf to control how much system RAM
(in bytes) will be allocated to the packet capture ring
buffers used by the card. The port defaults to allocating
1/5th of the system RAM, but this variable can be
adjusted according to requirements. A minimum of 8MB
is required.

If you built the dag3 port with libpcap support, you
should be aware of the requirements to ensure pcap
enabled applications are able to use the DAG card as
a capture device. The base FreeBSD system ships with
its own version of libpcap, which is installed in /lib by
default. Applications that are dynamically linked against
libpcap will be linked against the /lib version of the
library. The libpcap port installed as a dependency of
the dag3 port installs itself into /usr/local/lib. The net
result is that the system ends up with two separate pcap
libraries available to the linker: one without DAG support
(in /lib) and one with DAG support (in /usr/local/lib).

By default, the system will link against the main
system pcap library in /lib. To change this behaviour,
/etc/libmap.conf can be used to remap the base system
pcap library to the DAG enabled pcap library from ports.
By adding the line shown in Listing 1 to the file, dynam-
ically linked executables using libpcap.so.5 (from /lib)
will now link to libpcap.so.0.9.7 (from /usr/local/lib). If
the dag3 port was build with libpcap support, this entry
will have been added for you by the port. This allows all
dynamically linked pcap applications to utilise the DAG
card as a capture device without even a recompile.

Listing 1 /etc/libmap.conf library remapping

libpcap.so.5 libpcap.so.0.9.7

Note that statically linked pcap applications will not
respond to the above configuration, and will need to
be explicitly recompiled against the pcap library in
/usr/local/lib in order to utilise the DAG card for capture.
A simple way to ascertain if an executable is dynamically
or statically linked is to use the ldd command. Running
ldd <path_to_binary> on the command line will
emit an error if the binary is statically linked.

III. GENERAL USAGE

A. Card Configuration
The dagthree program is used to configure the card

and show status information. Running the program with

no arguements displays the current configuration of the
card. Running dagthree default will restore the
card to its default configuration. Running with the -si
switch will show the current status of the card. Other
options which can be configured with the dagthree
utility include:

• reset: Reset the ethernet framers, set auto mode.
• default: Initialise the card and reinstate factory

default settings.
• 10: Force 10BaseT mode.
• 100: Force 100BaseTX mode.
• 1000: Force 1000BaseT mode.
• slen=X: Capture X bytes of the packet content.
• varlen/novarlen: In variable length capture mode,

packet records will match the size of the captured
packet or be truncated to slen bytes. In fixed length
capture mode (novarlen), packet records will always
be slen bytes in length, with padding added if
required.

• steer - Separate or combine the receive streams.
The logical path from the DAG hardware to the

operating system is known as a stream. The DAG
3.7GF card supports two independent receive streams
and one transmit stream. The steer option controls
whether each physical port uses its own receive stream,
or whether both ports use a single receive stream, as
illustrated by Figure 1.

d a g 0 : 0 d a g 0 : 2

Port A Port B

PCAP Device

DAG Hardware

d a g 0 : 0 d a g 0 : 2

Port A Port B

PCAP Device

DAG Hardware

s t e e r = s t r e a m 0 steer= i face
(default)

Fig. 1. Configuration of receive streams

Each utilised stream requires an individual allocation
of memory from the system RAM allocation made to the
DAG card (discussed in section II-A).

You may manually specify the amount of
buffer memory (in megabytes) allocated to each
stream with the dagthree mem option. The
format is mem=<rx_stream_0>:<tx_stream>
:<rx_stream_2>. For example, to set the first

CAIA Technical Report 080507A May 2008 page 2 of 4

receive stream buffer to 48MB, the second receive
stream buffer to 64MB and the transmit stream buffer
to 16MB, run dagthree mem=48:16:64 on the
command line. Of course the total of these values must
not exceed the amount of system RAM allocated to the
DAG card.

Sensible memory allocation will depend on the con-
figuration of the steer option. If steer is set to
‘stream0’ then all memory should be allocated to the
first stream. If steer is set to ‘iface’, memory should
be split between both receive streams.

The default configuration allocates 16MB to the trans-
mit stream and divides the remaining amount between
the two receive streams.

B. Capturing Data

The dagsnap utility can be used to capture all
packets from the DAG card to a file in the Endace
Extensible Record Format (ERF). To use the data from
an ERF dump file with applications that require pcap
formatted data, the dagconvert utility can be used to
convert between formats.

If the dag3 port was built with libpcap support, you
can also use any libpcap based application to capture
packets from the dag card e.g. tcpdump -ni dag0
-w dump.pcap.

The DAG cards are built with inline forwarding ap-
plications in mind. As such, they are equipped with
hardware fail-safe relays which automatically turn the
DAG ports into an electrical passthrough in the event
of a machine malfunction. Before any capturing can be
performed, the fail-safe relays must be engaged using
the dagwatchdog -p & command. Once started, the
command can be left running in the background for all
subsequent capture sessions, but must be restarted if the
machine is rebooted or the command terminates.

IV. COMMON EXPERIMENTAL DAG USAGE

SCENARIOS

All configuration examples in this section assume the
DAG card has been reset to default configuration as
described in Section III-A.

A. Passive Taps

By using a hub or mirrored switch port, the DAG
card can be supplied with a passive tap of network
traffic between devices, as shown in Figure 2. No special
configuration of the DAG host is required other than the
steps outlined in Section III-B.

We can construct scenarios to test how an individual
device affects packets flowing through it. A typical

Port Mir ror

DAG Port A

Machine wi th DAG 3 .7GF

Fig. 2. Passive tap

Device under test

Machine wi th DAG 3 .7GF

DAG Port A

 Send
(v ia device under test)

Receive

VLAN 1 VLAN 2

Combined
Port
Mi r ror

Fig. 3. Passive single stream double tap

configuration might involve a switch segmented into
vlans, and the test device straddling the vlans. Figure
3 still uses a passive tap, but by virtue of a single port
mirror on the switch replicating packets from our test
device’s interfaces to the DAG machine, we can capture
traffic either side of the test device.

Whilst physically simple to configure, this scenrio has
the drawback that we aggregate traffic from our test
device’s interfaces into a single fixed rate port mirror.
This obviously reduces the peak throughput we can
sustainably mirror at our switch and also introduces
the possibility of slight queuing delays and jitter with
packets being buffered at the switch’s port mirror output
queue. However, this scenario is perfectly suitable for
small data rate tests.

As a result of the DAG 3.7GF’s dual port configura-
tion, we can further expand the scenario in Figure 3 to
that shown in Figure 4. Here we utilse two separate port
mirrors, each capturing only the traffic through one of the
interfaces of our test device. This reduces the possible
bottleneck at the port mirror’s output queue which was

CAIA Technical Report 080507A May 2008 page 3 of 4

Device under test

Port mir ror
Port mir ror

DAG Port 1 DAG Port 2
Cl ient Server

Machine wi th DAG 3 .7GF

Fig. 4. Passive double stream double tap

present in the previous scenario. It also allows the peak
throughput we can sustainably mirror at our switch to
increase to the line rate of our port mirrors.

To configure the DAG card so that the two ports can
be used independently, run dagthree steer=iface
on the command line. This separates the ports into
independent devices, allowing them to be individually
accessed via dag0:0 and dag0:2 e.g. tcpdump -ni
dag0:0 -w dump.pcap will capture from the first
of the two DAG capture ports.

B. Active Taps With Passthrough

As alluded to in Section III-B, the DAG cards can
be used inline to create an “active” tap in addition to
the passive tap scenarios already discussed. Figure 5
illustrates a simple active tap with passthrough scenario.

DAG Port A DAG Port B

Machine wi th DAG 3 .7GF

Fig. 5. Active tap with passthrough

A single overlapping buffer is used for both receiving
and transmitting traffic, which must be configured by
running dagthree overlap on the command line.
One disadvantage of this technique is that this function-
ality may only be achieved using the DAG API directly
and cannot be utilised by libpcap based applications.

The dagfwddemo demonstration utility can be used
to configure the DAG card to forward packets. It requires
a BPF filter argument which will record to disk and bidi-
rectionally forward traffic matching the filter expression.

It has been observed that this utility introduces sig-
nificant additional latency (in the order of multiple
milliseconds) into the packet path. Further investigation
is required to ascertain the cause of this delay, but we
envisage that any serious use of the DAG forwarding
capabilities would require the creation of a custom piece
of software in C/C++ that utilised the DAG API directly.

V. CONCLUSION

This report describes how to configure a FreeBSD 7.0
machine to be an Endace DAG based high performance
packet capture device. Some common usage scenarios
and their associated configuration details were also dis-
cussed to provide a starting point for anyone wishing
to use a DAG based capture solution for their research
work.

REFERENCES

[1] “Endace,” accessed 29 April 2008. [Online]. Available:
http://www.endace.com/

[2] “Endace - dag network monitoring cards,” accessed 29 April
2008. [Online]. Available: http://www.endace.com/our-products/
dag-network-monitoring-cards/

[3] “Freebsd dag3 port,” accessed 29 April 2008. [Online]. Available:
http://caia.swin.edu.au/urp/newtcp/tools/dag3-port.tar.gz

CAIA Technical Report 080507A May 2008 page 4 of 4

http://www.endace.com/
http://www.endace.com/our-products/dag-network-monitoring-cards/
http://www.endace.com/our-products/dag-network-monitoring-cards/
http://caia.swin.edu.au/urp/newtcp/tools/dag3-port.tar.gz

	Introduction
	Configuration
	Tuning

	General Usage
	Card Configuration
	Capturing Data

	Common Experimental DAG Usage Scenarios
	Passive Taps
	Active Taps With Passthrough

	Conclusion
	References

