
Experimental Evaluation of Latency Induced in
Real-Time Traffic by TCP Congestion Control

Algorithms
Alana Huebner1

Centre for Advanced Internet Architectures, Technical Report 080818A
Swinburne University of Technology

Melbourne, Australia
4087127@student.swin.edu.au

Abstract—This report contains an experimental eval-
uation of the impact that congestion control algorithms
NewReno, HTCP and CUBIC have on the latency of VoIP
traffic. It was found that when a TCP flow and VoIP flow
share a bottleneck link the induced delay in the VoIP flow
is related to the growth of the congestion window. CUBIC
induced the highest average latency in the VoIP flow and
HTCP the least.

Index Terms—TCP, NewReno, CUBIC, HTCP, VoIP

I. INTRODUCTION

The short comings of NewReno under particular traffic
conditions has lead to the development of new TCP con-
gestion control (CC) algorithms. The NewTCP project
[1] aims to provide independent real-world evaluation of
these competing CC algorithms.

The performance of a CC algorithm is commonly
evaluated by its interaction with other TCP flows with
metrics such as fairness, responsiveness and conver-
gence. CC algorithms may also be evaluated by their
interaction with unrelated and non-reactive traffic such
as real-time traffic.

This report will investigate the latency that a TCP
flow induces in a VoIP flow. This report’s work extends
previous empirical evaluation of latency induced in VoIP
traffic by NewReno and HTCP under FreeBSD [2].
NewReno and HTCP under FreeBSD will be further
investigated and the evaluation will be extended to
include three congestion control algorithms under Linux,
NewReno, HTCP and CUBIC, enabling a comparison
between operating systems.

1The author is currently an engineering student at Swinburne
University of Technology. This report was written during the author’s
winter internship at CAIA in 2008.

H-TCP and CUBIC are algorithms designed to address
NewReno’s poor performance over high bandwidth and
long distance paths, as a result this report is mainly
concerned with induced latency over large bandwidth×
delay product (BDP) paths.

The dynamic nature of CC algorithms impacts on the
occupancy of network queues. This report will show that
queue occupancy is related to TCP’s congestion window,
and that the induced delay experienced by VoIP traffic
is proportional to the queue occupancy.

Section 2 will begin with an brief discussion of con-
gestion control algorithms and an overview of NewReno,
HTCP and CUBIC.

Section 3 will cover the tools that were essential to
the experimental method.

The experimental set up will be detailed in Section
4 with a description of the of the NewTCP testbed,
hardware and software configuration and TCP tuning.

Section 5 describes the experimental method and how
statistics were collected.

An analysis of the observed behaviour of each al-
gorithm will be performed in Section 6. This section
will also discuss differences between CC algorithms
implemented under FreeBSD and Linux.

Section 7 will investigate the latency each algorithm
induces in VoIP traffic.

Section 8 will conclude and identify areas for further
work.

II. CONGESTION CONTROL ALGORITHMS

TCP has four types of congestion control algorithm:
Slow Start, Fast Retransmit, Fast Recovery and Conges-
tion Avoidance. This report is primarily concerned with
congestion avoidance algorithms.

CAIA Technical Report 080818A August 2008 page 1 of 10

mailto:4087127@student.swin.edu.au

A congestion avoidance algorithm controls the value
of TCP’s congestion window variable cwnd adaptively
to network conditions. The actual window size used will
be the minimum of the sender’s buffer size, the re-
ceiver’s window size and cwnd. Traditionally congestion
avoidance follows an Additive Increase Multiplicative
Decrease (AIMD) scheme.

The additive increase phase is generally specified
in terms of the constant “alpha”, α. During additive
increase cwnd grows incrementally, gently discovering
the network’s capacity to support the TCP flow. A
common approximation described in [3] is to grow cwnd
according to Equation 1 every time a non-duplicate
acknowledgement arrives.

cwnd = cwnd +
α(SMSS × SMSS)

cwnd
(1)

The multiplicative decrease phase is generally spec-
ified in terms of the constant “beta”, β, also referred
to as the backoff factor. cwnd continues to grow until
congestion is detected, typically inferred by packet loss.
Multiplicative decrease reduces cwnd on packet loss to
lessen the flow’s impact on the congested network. The
reduction of cwnd is given by Equation 2.

cwnd = β × cwnd (2)

The AIMD scheme results in cwnd cycling around
the capacity of the path. Examples of this behaviour for
each algorithm can be seen in Section VI.

A. NewReno

NewReno [4] is the most common variant of TCP.
NewReno modified the Fast Recovery algorithm of stan-
dard TCP to include partial acknowledgements. Partial
acknowledgements improve the performance of Fast Re-
covery when Selective Acknowledgements (SACK) are
unavailable. Partial acknowledgements and SACK are
just two of the extensions included in the evolution of
TCP up to NewReno. TCP extensions are well docu-
mented in RFC4614 [5].

The AIMD scheme of standard TCP is characterised
by α = 1 and β = 0.5. cwnd increases linearly by one
Sender’s Maximum Segment Size (SMSS) every RTT
and halves on congestion.

B. H-TCP

H-TCP [6] is a congestion avoidance algorithm de-
veloped at the Hamilton Institute in Ireland to improve
TCP performance over high-speed and long distance

networks. Unlike NewReno, α and β are no longer
constants.

H-TCP has high speed and low speed modes of op-
eration for backwards compatibility with standard TCP.
During low speed mode α = 1 causing cwnd to increase
linearly in the same way as NewReno. After one second
has elapsed since congestion H-TCP enters high speed
mode. α becomes a parabolic function of time since the
last congestion event and cwnd grows more aggressively.
When the duration of a congestion epoch is less than one
second, as for low BDP networks, H-TCP never exits low
speed mode and behaves like NewReno.

To achieve fairness between flows of differing RTTs
through a common bottleneck, HTCP can utilise RTT
scaling [7] to make cwnd growth effectively invariant
with RTT.

H-TCP has an adaptive backoff factor which ranges
from 0.5 to 0.8. There are two algorithms which control
the backoff factor, together they try to reach a compro-
mise between bandwidth utilisation and responsiveness.

Bandwidth utilisation is maximised by reducing the
idle time of the link caused by the reduction of cwnd
after congestion. The backoff factor is calculated such
that the queue has just enough time to drain before
cwnd increases again. The ratio of RTTmin/RTTmax is
used in the calculation, where RTTmin is an estimate
of the propagation delay and RTTmax is an estimate of
the maximum additional queuing delay. This algorithm
improves throughput on links with small queues but at
the cost of responsiveness.

To achieve better responsiveness H-TCP can utilise
an adaptive reset algorithm. The maximum value of
cwnd that was achieved just before a congestion event
is monitored over time. If cwndmax increases H-TCP
detects that more bandwidth is available and increases
the backoff factor. If cwndmax decreases H-TCP detects
that less bandwidth is available and the backoff factor is
decreased, releasing bandwidth to any new flows.

C. CUBIC

The CUBIC [8] congestion avoidance algorithm was
developed by the Networking Research Lab at North
Carolina State University. Like H-TCP it is also designed
for high-speed and long distance networks. CUBIC is a
revision of the BIC algorithm which was found to be
too aggressive towards standard TCP [9]. CUBIC has
been the default CC algorithm in the Linux kernel since
version 2.6.19.

The cwnd growth is a cubic function of time since
the last congestion event. CUBIC adaptively controls

CAIA Technical Report 080818A August 2008 page 2 of 10

the cubic function through selection of the inflection
point. The maximum value of cwnd recorded just before
congestion becomes the value of the inflection point for
the next growth cycle. During the next cycle the cwnd
rapidly increases until it forms a plateau at the inflection
point, thus maximising the time spent at the point where
throughput is highest.

CUBIC’s backoff factor is 0.8. CUBIC’s authors ac-
knowledge that this choice was made with the knowl-
edge that convergence would be slower than standard
TCP, and that they will possibly address the issue with
adaptive backoff in a future version of CUBIC. Current
versions of CUBIC somewhat mitigate the problem with
a fast convergence algorithm. Fast convergence monitors
the maximum value of cwnd just before congestion
events, if cwndmax decreases CUBIC will place the
inflection point at 0.9 × cwndmax to release bandwidth
to new flows.

III. EXPERIMENTAL TOOLS

A number of specially developed tools and patches
were used to conduct the experiment described in this
report. They can be downloaded from CAIA’s NewTCP
project web page [1]. Further mention of these tools in
this report refer to the modified versions discussed below.

A. Siftr and Web100

SIFTR [10] is a FreeBSD kernel module that operates
between the IPv4 and TCP layers of the network stack.
When a TCP/IP packet is processed by the stack the
state of TCP variables are logged to a file. SIFTR allows
TCP statistics to be collected with very fine granularity
making it ideal for TCP research.

Web100 [11] is a suite of TCP instruments for Linux
created for the purpose of optimizing TCP performance.
The instruments are implemented in a kernel module and
accessed from userland.

Although each module is different in how and what
TCP statistics they collect, the provide comparable data
after some post processing of the Web100 output de-
scribed in Section V. The most important statistic these
tools allow us to collect is the instantaneous value of
cwnd.

B. Dummynet

Dummynet [12] is a FreeBSD utility for traffic shap-
ing and simulating network conditions. It is controlled
through FreeBSD’s IP firewall (ipfw). Packets are chan-
nelled into a dummynet pipe object with a firewall rule.
The pipe acts on the traffic to simulate the effects of

bandwidth, delay, packet loss and queue size. A patch
developed at CAIA logs statistics about each pipe such
as the occupancy of the pipe’s queue and when packet
loss occurs.

C. Iperf

The Iperf [13] utility creates TCP flows between an
Iperf client and server. As of version 2.0.4 Iperf can be
used to specify the congestion control algorithm used
for a TCP flow. A patch developed at CAIA also allows
send and receive buffer sizes to be configured for a flow.

D. FreeBSD Modular Congestion Control and H-TCP
Module

As part of the NewTCP project a light-weight mod-
ularised congestion control framework has been devel-
oped for FreeBSD 7.0 [14]. Modular congestion control
provides a means for dynamically loading congestion
control algorithms into the TCP/IP stack. There were
two CC modules available for FreeBSD at the time of
writing, NewReno and HTCP. The HTCP module was
also developed at CAIA [15].

IV. EXPERIMENTAL SETUP

A. The Testbed

Experiments were conducted over a testbed configured
in the dumbbell topology shown in Figure 1. The testbed
emulates a bottleneck link between two Gigabit Ethernet
networks.

The router between the networks runs FreeBSD 7.0
on an Intel Celeron at 2.80GHz. Dummynet was used to
simulate a bottleneck link with configurable character-
istics. All traffic between the networks passed through
two dummynet pipes in either direction. The first pipe
was configured with a bandwidth and drop tail queue to
create the congestion point. The second pipe introduced
the propagation delay of the link.

Host A and Host C acted as the sender and receiver
of a TCP flow across the link. The hosts are dual-boot
Linux 2.6.25 and FreeBSD 7.0-RELEASE. Linux was
instrumented with Web100. FreeBSD was instrumented
with the CAIA modular congestion control patch and
the H-TCP module. The specifications of these hosts are
listed in Table I.

Host B is a SmartBits2000 [16] industrial traffic
generator and network performance analysis and testing
system. It was used to generate a stream of pseudo VoIP
traffic equivalent to the G.711 encoding standard: 200
Byte IP/UDP/RTP packets with inter-arrival times of
20ms. The VoIP traffic was sent from Host B to Host D

CAIA Technical Report 080818A August 2008 page 3 of 10

Host A
TCP sender

Host B
SmartBits

Host C
TCP receiver

Host D

Endace
DAG

bw,
drop tail queue delay

delay bw,
drop tail queue

Gigabit Ethernet

Mirrored traffic

Fig. 1. Logical topology of the TCP Testbed

Motherboard Intel Desktop Board DG965WH
CPU Intel Core2 Duo E6320 1.86GHz 4MB L2 Cache

RAM 1GB (1 x 1GB) PC5300 DDR2-667
HDD Seagate 250GB ST3250410AS SATA II

NIC Intel 82566DC PCIe gigabit Ethernet (onboard)
Intel PRO/1000 GT 82541PI PCI gigabit Ethernet

TABLE I
TESTBED PC SPECIFICATIONS

across the bottleneck link. Host D implemented a firewall
to make it behave as a sink, accepting traffic from Host
B but generating no reply traffic.

All ingress and egress traffic to and from the router
was mirrored to a Endace DAG 3.7GF high perfor-
mance capture card. The DAG host runs FreeBSD 7.0-
RELEASE on a dual core Intel Pentium III at 1266MHz.
Configuring the DAG card and capturing traffic with it
is documented in [17]. The card was configured to time
stamp packets with microsecond resolution.

B. TCP Tuning

As participants of the TCP flow Host A and Host C
require a considerable amount of TCP tuning to reveal
the growth of cwnd as determined by the congestion
control algorithm. TCP extensions, characteristics of the
underlying operating system and implementation fea-
tures all have the potential to obfuscate the behaviour
of the algorithm. See [18] for a discussion about TCP
tuning for FreeBSD. Configuration options not in Listing
1 were left at their default values.

C. H-TCP Tuning

The default operation of H-TCP varies between Linux
and FreeBSD. The features of H-TCP were tuned on

Listing 1 Tuning TCP on FreeBSD
Boot loader tuning
vm.kmem size=536870912
vm.kmem size max=536870912
kern.ipc.nmbclusters=32768
kern.maxusers=256
kern.hz=2000
hw.em.rxd=4096
hw.em.txd=4096
net.inet.tcp.reass.maxsegments=75000
htcp load=”YES”
sysctl tuning
kern.ipc.maxsockbuf=104857600
net.inet.tcp.inflight.enable=0
net.inet.tcp.hostcache.expire=1
net.inet.tcp.hostcache.prune=5
net.inet.tcp.recvbuf auto=0
net.inet.tcp.sendbuf auto=0
net.inet.tcp.tso=0
net.inet.ip.fastforwarding=1
net.isr.direct=1
net.inet.tcp.delayed ack=0
net.inet.tcp.reass.maxqlen=13900

Listing 2 Tuning TCP on Linux
ethtool -K <experiment interface> tso off
sysctl net.ipv4.tcp no metrics save=1

each operation system so that the implementations would
behave in the same way.

Adaptive backoff for bandwidth utilisation is enabled
and not tunable on Linux, on FreeBSD it is tunable
through the variable adaptive backoff but disabled by
default. To enable a comparison between the implemen-
tations adaptive backoff was enabled on FreeBSD as
shown in Listing 4.

Adaptive reset is only implemented on Linux so it
was disabled as shown in Listing 3. It is controlled
through the variable use bandwidth switch, which is
enabled by default. This feature is not required as the
tests involved only a single TCP flow across a constant
bandwidth link.

RTT scaling is disabled by default on FreeBSD, but on
Linux it is enabled by default. RTT Scaling is also un-
necessary for tests involving single TCP flows so it was
disabled in Linux through the variable use rtt scaling
as shown in Listing 3.

CAIA Technical Report 080818A August 2008 page 4 of 10

Listing 3 Tuning H-TCP on Linux
modprobe -r tcp htcp
modprobe tcp htcp use rtt scaling=0
use bandwidth switch=0

Listing 4 Tuning H-TCP on FreeBSD
sysctl net.inet.tcp.cc.htcp.adaptive backoff: 1

V. EXPERIMENTAL METHOD

Each test run consisted of a single TCP flow and
single VoIP flow simultaneously sharing the bottleneck
link. A test run lasted 3 minutes and was performed at
least twice. Additional runs were performed if the tests
showed unexpected results as discussed in Section VII-
A.

During each test run tcpdump captured all traffic on
Hosts A, C and DAG.

A range of path characteristics were tested using all
combinations of the parameters listed in Table II. Table
III provides a full list of the test variables, the list of
BDPs was derived from Table II.

A. Automated Test Scripts

A suite of scripts have been created as part of the
NewTCP [1] project to automate the experimental pro-
cess. The scripts configure the testbed, confirm connec-
tivity, start and terminate logging, start and terminate
TCP flows and transfer log files to a storage location.
Some steps have been taken towards automating the data
processing stage as well.

B. Gathering Latency Data

The traffic capture on the DAG interface records each
packet twice, once upon entering the congested link
and then again on leaving it. VoIP traffic was found
in the dump file by filtering on the MAC addresses
of SmartBits and Host D. The two observations of
each VoIP packet were found by pairing up identical
packet hashes. By subtracting the timestamps of the two
observations it can be determined how long the packet
spent in the link. This value is referred to as the one way
delay (OWD).

C. Recording the Congestion Window

During the FreeBSD tests SIFTR was used to log TCP
statistics on hosts A and C, SIFTR was configured to
capture statistics for every TCP/IP packet processed by

Bandwidth 1Mbps, 10Mbps, 100Mbps
Queue size 1 BDP, 1/4 BDP

Delay 16ms, 80ms, 160ms

TABLE II
DUMMYNET CONFIGURATION PARAMETERS AND VALUES

Operating Systems Linux 2.6.25, FreeBSD 7.0-RELEASE
Algorithms NewReno, H-TCP, CUBIC (Linux only)

BDPs (Bytes) 2 ∗ 103, 1 ∗ 104, 2 ∗ 104, 1 ∗ 105,
2 ∗ 105, 1 ∗ 106, 2 ∗ 106

TABLE III
TEST VARIABLES

the stack ensuring the finest granularity possible. During
the Linux tests TCP statistics were logged with Web100.
Web100 was polled every 1 ms to ensure a reasonable
granularity even with the lowest BDP test conducted.
The Web100 output was logged to a file in the same
format as the SIFTR log to allow us to easily process
statistics collected under both operating systems.

VI. ALGORITHM BEHAVIOUR ANALYSIS

Observing cwnd gives a direct insight into the be-
haviour of each algorithm. The value of cwnd gathered
by SIFTR and Web100 is presented here across three
typical congestion epochs from the middle of the 3
minute flow.

A congestion epoch is the time between congestion
events, where the congestion event is packet loss due
to a full queue at the congestion point. During a single
epoch we observe TCP in fast recovery and congestion
avoidance mode. Due to the static network conditions
produced by the testbed the behaviour of cwnd during
each epoch is approximately identical for the duration of
the flow1.

Figures 2, 3, 4, 5, and 6 show cwnd for tests with an
10Mbps link, round trip time of 80ms and queuing ca-
pacity equal to the BDP. For bottleneck links with a small
BDP, such as the lowest BDP tested (1Mbps × 16ms)
there was no discernible difference between the algo-
rithms because cwnd could not grow large. Differences
began to appear when cwnd could grow beyond 25

1Except at the start and end of each run, and allowing for small
anomalies which inevitably occur when experimenting with real
equipment. A TCP flow starts in slow start mode and often ends
with the congestion window suddenly opening in order to flush the
send buffer. As this behaviour is not determined by the congestion
avoidance algorithm we do not explore it further in this report.

CAIA Technical Report 080818A August 2008 page 5 of 10

0
20

40
60

80
10

0
qu

eu
e

oc
cu

pa
nc

y
(K

by
te

s)

0 10 20 30 40 50

0
20

40
60

80
10

0
12

0
14

0

time (secs)

cw
nd

 (
pk

ts
)

New Reno Cwnd/Queue Occupancy vs Time

1 New Reno flow, 1 UDP flow. 10Mbps, 80ms delay. 100000B queue.

flow 1 cwnd queue size

Fig. 2. Linux’s NewReno

0
20

40
60

80
10

0
qu

eu
e

oc
cu

pa
nc

y
(K

by
te

s)

0 5 10 15 20 25

0
20

40
60

80
10

0
12

0
14

0

time (secs)

cw
nd

 (
pk

ts
)

New Reno Cwnd/Queue Occupancy vs Time

1 New Reno flow, 1 UDP flow. 10Mbps, 80ms delay. 100000B queue.

flow 1 cwnd queue size

Fig. 3. FreeBSD’s NewReno

packets. 10Mbps × 80ms was the lowest BDP tested
to show the growth of cwnd over an epoch with a
fine enough granularity to clearly reveal the differences
between the algorithms.

A. Congestion Epoch Duration

On comparing the NewReno and HTCP results on
FreeBSD and Linux it is notable that the FreeBSD im-
plementations have a shorter congestion epoch duration
than the Linux versions due to faster cwnd growth.

On Linux delayed acknowledgement was enabled
which may account for the difference. Delayed Ac-
knowledgement defined in RFC1122 [19] increases TCP
efficiency by allowing a single ACK to acknowledge
up to two full sized data segments. The drawback of
delayed acknowledgement is that less ACKs received
by the sender results in cwnd being updated less often.
Linux implements Appropriate Byte Counting defined

0
20

40
60

80
10

0
qu

eu
e

oc
cu

pa
nc

y
(K

by
te

s)

0 2 4 6 8

0
20

40
60

80
10

0
12

0
14

0

time (secs)

cw
nd

 (
pk

ts
)

HTCP Cwnd/Queue Occupancy vs Time

1 HTCP flow, 1 UDP flow. 10Mbps, 80ms delay. 100000B queue.

flow 1 cwnd queue size

Fig. 4. Linux’s H-TCP

0
20

40
60

80
10

0
qu

eu
e

oc
cu

pa
nc

y
(K

by
te

s)

0 2 4 6

0
20

40
60

80
10

0
12

0
14

0

time (secs)

cw
nd

 (
pk

ts
)

HTCP Cwnd/Queue Occupancy vs Time

1 HTCP flow, 1 UDP flow. 10Mbps, 80ms delay. 100000B queue.

flow 1 cwnd queue size

Fig. 5. FreeBSD’s H-TCP

0
20

40
60

80
10

0
qu

eu
e

oc
cu

pa
nc

y
(K

by
te

s)

0 5 10 15 20 25 30

0
20

40
60

80
10

0
12

0
14

0

time (secs)

cw
nd

 (
pk

ts
)

CUBIC Cwnd/Queue Occupancy vs Time

1 CUBIC flow, 1 UDP flow. 10Mbps, 80ms delay. 100000B queue.

flow 1 cwnd queue size

Fig. 6. Linux’s CUBIC

CAIA Technical Report 080818A August 2008 page 6 of 10

in [20] which was designed to mitigate the problem by
increasing cwnd based on the number of bytes being
acknowledged.

Despite Appropriate Byte Counting there is still a clear
difference in the epoch duration between the FreeBSD
and Linux NewReno tests, our results showed Linux’s
NewReno epoch duration to be approximately 1.85 times
the epoch duration of FreeBSD’s NewReno.

HTCP was less affected, Linux’s HTCP epoch dura-
tion was approximately 1.14 times that of FreeBSD’s.
This may be because HTCP’s high speed mode defines
α as a function of time. Only the low speed NewReno
mode of HTCP experienced noticeably slower growth.

B. Fast Recovery
FreeBSD and Linux implement different fast recovery

algorithms which can be most clearly seen in Figures
4 and 5 near t = 3 seconds. FreeBSD implements the
standard fast recovery algorithm defined in RFC2581 [3]
and Linux implements an algorithm called Rate-Halving
[21].

Theoretically cwnd is set to β×cwnd after fast recov-
ery but in implementation this can cause micro-bursts,
a large burst of packets which may saturate the queue.
Linux and FreeBSD solve this problem in a similar way,
by incrementally yet rapidly increasing cwnd up to the
backoff value. The queue experiences a series of small
bursts during this process. Burst mitigation is discussed
in [22].

C. CUBIC’s fast convergence mode
An interesting behaviour of CUBIC is the two-part

cwnd cycle shown in Figure 6. In our tests this was
observed whenever the queuing capacity of the path was
1 BDP and for all queue capacities of our largest BDP
tests (100Mbps× 160ms).

The short epoch is the expected behaviour of CUBIC
during congestion avoidance. We observe the concave
tail of a cubic function with the inflection point set at
cwndmax of the last epoch.

During the longer section of the cycle CUBIC appears
to have entered fast convergence mode as described
in [8]. CUBIC has detected a decrease in cwndmax

and lowered the inflection point to release bandwidth
to new flows. The actual decrease experienced in the
test was no more than a few packets but the Linux
2.6.25 implementation of CUBIC takes any decrease in
cwndmax to trigger fast convergence. For this traffic
scenario CUBIC’s fast convergence algorithm incorrectly
assumes that even the slightest decrease in cwndmax

means new flows have entered the link.

0
20

40
60

80
10

0
qu

eu
e

oc
cu

pa
nc

y
(K

by
te

s)

*

*

*

*

*

*

*

*

*

**

*

**
**

*

**
**
**
**
**

**
**

*

*

*

*

*

*

*

*

*

*

**

*

**

**
*

**

*

*

**

**
**
**

*

*

*

*

*

*

*

*
*

*
*

*
**

*

**

**
**

**
**

**
**
**
**

**
**
*

0 1 2 3 4 5 6 7

40
60

80
10

0
12

0

time (secs)

ow
d

(m
s)

Delay/Queue Occupancy vs Time

1 HTCP flow, 1 UDP flow. 10Mbps, 80ms delay. 100000B queue.* owd 1 queue size

Fig. 7. OWD experienced by VoIP traffic sharing a congested link
with Linux’s H-TCP

0
20

40
60

80
10

0
qu

eu
e

oc
cu

pa
nc

y
(K

by
te

s)

*

*

*

*

*

*
**

*

*

*

*

*

*

*

**

*

*

*

*

*

*

*

*

*

*

*

*

*
**

*

*
*

*

*

*

*

**

*

*

*

*

**

*

*

*

**

*

*

*

*

*

**
*

*

*

*

*

*

*

**

*

*

*

*

*

*

*

*

*

0 5 10 15 20 25 30

40
60

80
10

0
12

0

time (secs)

ow
d

(m
s)

Delay/Queue Occupancy vs Time

1 CUBIC flow, 1 UDP flow. 10Mbps, 80ms delay. 100000B queue.* owd 1 queue size

Fig. 8. OWD experienced by VoIP traffic sharing a congested link
with Linux’s CUBIC

VII. LATENCY ANALYSIS

Figures 2, 3, 4, 5, and 6 show the occupancy of the
queue at the congestion point as cwnd cycles. These
figures demonstrate the close relationship that exists be-
tween the congestion window and the queue occupancy.
As cwnd grows the throughput of the flow increases
and the queue fills. When the queue reaches maximum
capacity packets are dropped and within a few RTTs
TCP reacts by multiplicatively decreasing cwnd. With
the reduction in throughput the queue has time drain.
The occupancy of the queue over time mimics the shape
of cwnd growth and has the same epoch frequency. The
rate at which each algorithm fills the queue is as different
as the algorithms themselves.

FIFO queues introduce delays proportional to the
number of packets already in the queue. The one way

CAIA Technical Report 080818A August 2008 page 7 of 10

10 15 20

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

CDF of one way delay

delay (ms)

100Mbps, 16ms delay. 200000B queue.

Linux Reno FreeBSD Reno Linux HTCP FreeBSD HTCP CUBIC

Fig. 9. CDF of delay experienced by VoIP traffic sharing a congested
link with a TCP flow

delay experienced by the VoIP traffic against queue
occupancy is shown in Figure 7 for H-TCP and in Figure
8 for CUBIC. These figures confirm that delay and queue
occupancy are directly proportional. Therefore the delay
experienced by VoIP packets over time is also closely
related to cwnd growth of the TCP flow it shares the
bottleneck link with.

Figures 9, 10 and 11 show the CDF of delay experi-
enced by the VoIP traffic sharing the link with a TCP
flow for three sets of link characteristics. The queuing
capacity was equal to the BDP for each link. The data
set was taken over three typical congestion epochs of the
TCP flow.

Each algorithm has a unique distribution of induced
delay which is approximately consistent2 for the three
link scenarios presented here. The distribution of delay
induced by NewReno is approximately uniform due to
its linear cwnd growth. HTCP’s slow then fast cwnd
growth distributes induced delay towards the minimum
delay. CUBIC’s initially agressive concave cwnd growth
distributes induced delay towards the maximum delay.

Each algorithm filled the queue to its maximum capac-
ity causing the VoIP traffic to experience the maximum
queuing delay. NewReno and HTCP allowed the queue
to completely drain before slowly filling it again. CUBIC
rarely allows the queue to become empty, keeping the
queue over 3/4 full 90% of the time.

The median induced delay for the three link scenarios
is shown in Figure 12. At each BDP H-TCP induced the
lowest median delay while CUBIC induced the largest
median delay.

2Excluding HTCP under Linux, discussed in VII-A

40 60 80 100 120

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

CDF of one way delay

delay (ms)

10Mbps, 80ms delay. 100000B queue.

Linux Reno FreeBSD Reno Linux HTCP FreeBSD HTCP CUBIC

Fig. 10. CDF of delay experienced by VoIP traffic sharing a
congested link with a TCP flow

40 60 80 100 120

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

CDF of one way delay

delay (ms)

100Mbps, 80ms delay. 1000000B queue.

FreeBSD Reno Linux HTCP FreeBSD HTCP CUBIC

Fig. 11. CDF of delay experienced by VoIP traffic sharing a
congested link with a TCP flow

Fig. 12. Median delay experienced by VoIP traffic sharing a
congested link with a TCP flow. 1 BDP queues.

CAIA Technical Report 080818A August 2008 page 8 of 10

0
20

0
40

0
60

0
80

0
10

00
qu

eu
e

oc
cu

pa
nc

y
(K

by
te

s)

110 120 130 140 150 160 170

0
20

0
40

0
60

0
80

0
12

00

time (secs)

cw
nd

 (
pk

ts
)

HTCP Cwnd/Queue Occupancy vs Time

1 HTCP flow, 1 UDP flow. 100Mbps, 80ms delay. 1000000B queue.

flow 1 cwnd queue size

Fig. 13. Unexpected cwnd growth of Linux’s HTCP

0
50

10
0

15
0

20
0

qu
eu

e
oc

cu
pa

nc
y

(K
by

te
s)

9 10 11 12 13 14 15

0
50

10
0

15
0

20
0

25
0

time (secs)

cw
nd

 (
pk

ts
)

HTCP Cwnd/Queue Occupancy vs Time

1 HTCP flow, 1 UDP flow. 100Mbps, 16ms delay. 200000B queue.

flow 1 cwnd queue size

Fig. 14. Unexpected cwnd growth of Linux’s HTCP

A. HTCP Irregularities

For particular path characteristics we observed un-
expected results from HTCP under Linux. Unexpected
cwnd growth was consistent across all test runs for the
duration of each test. The cause of this behaviour is left
for future investigation.

In Figure 13 the growth of cwnd can be seen fluc-
tuating between low speed mode and high speed mode
within a single congestion epoch. This behaviour was
observed when the link was characterised by the two
highest BDPs tested (100Mbps×80ms and 100Mbps×
160ms). The congestion epoch duration was of the order
of 10s of seconds which may be why this behaviour
is not observed for lower BDP tests. The effect of this
fluctuation on the distribution of delay induced by HTCP
can be observed in Figure 11.

In Figure 14 cwnd growth is seen to behave as HTCP
for the first two epochs and as NewReno for last epoch.

Consistently observed during the 100Mbps×16ms tests,
this behaviour continues across the entire length of the
test run, with HTCP-like epochs randomly dispersed
among NewReno-like epochs. As a result the distribution
of delay induced by HTCP in Figure 9 is similar to
NewReno.

VIII. CONCLUSION AND FURTHER WORK

This report describes real-world experimentation with
TCP CC algorithms to investigate how they impact
on the latency of real-time traffic. Tests consisted of
a TCP flow and a VoIP flow traversing a bottleneck
link. The algorithms investigated were NewReno, HTCP
under FreeBSD and NewReno, HTCP and CUBIC under
Linux. A range of link characteristics were tested, with
most interesting results occurring at high BDPs.

The operation of algorithms during congestion avoid-
ance mode was observed through the growth of cwnd.
At the same time the queue occupancy was shown to rise
and fall in the same cyclical way as cwnd. It was found
that the delay experienced by the VoIP flow was directly
proportional to the queue occupancy. CUBIC induced
the most average delay in the VoIP flow and HTCP the
least.

On comparing the implementations of NewReno and
HTCP under FreeBSD and Linux it was found that each
operating system used a different fast recovery technique
but that the CC algorithms were generally the same. The
Linux algorithms had longer congestion epochs which
was possibly due to delayed acknowledgements being
enabled. In future experiments better comparisons could
be made with further TCP tuning under Linux.

It would be useful to extend this analysis to link char-
acteristics which emulate a particular real-word scenario.
For example a consumer ADSL link, to investigate the
impact of latency fluctuations on a user who is simul-
taneously holding a VoIP conversation and executing a
bulk TCP data transfer.

Furthermore our results show that the rate at which
latency cycles is different for each algorithm, it is left for
future work to discover the impact of congestion epoch
frequency on real-time traffic.

ACKNOWLEDGEMENTS

I would like to thank Lawrence Stewart for guid-
ance and assistance throughout this project, Grenville
Armitage for his support and CAIA for the opportunity
to undertake an internship. This report has been made
possible in part by a grant from the Cisco University
Research Program Fund at Community Foundation Sili-
con Valley.

CAIA Technical Report 080818A August 2008 page 9 of 10

REFERENCES

[1] “The NewTCP Project,” August 2008, Accessed 8 Aug 2008.
[Online]. Available: http://caia.swin.edu.au/urp/newtcp

[2] G. Armitage, L. Stewart, M. Welzl, and J. Healy, “An indepen-
dent H-TCP implementation under FreeBSD 7.0 - description
and observed behaviour,” ACM SIGCOMM Computer Commu-
nication Review, vol. 38, no. 3, 2008.

[3] M. Allman, V. Paxson, and W. Stevens, “TCP Congestion
Control ,” RFC 2581 (Proposed Standard), Apr. 1999, updated
by RFC 3390. [Online]. Available: http://www.ietf.org/rfc/
rfc2581.txt

[4] S. Floyd, T. Henderson, and A. Gurtov, “The NewReno
Modification to TCP’s Fast Recovery Algorithm,” RFC
3782 (Proposed Standard), Apr. 2004. [Online]. Available:
http://www.ietf.org/rfc/rfc3782.txt

[5] M. Duke, R. Braden, W. Eddy, and E. Blanton, “A Roadmap
for Transmission Control Protocol (TCP) Specification
Documents,” RFC 4614 (Proposed Standard), Sep. 2006.
[Online]. Available: http://www.ietf.org/rfc/rfc4614.txt

[6] D. Leith, R. Shorten, “H-TCP: TCP for high-speed and
long-distance networks,” in Second International Workshop
on Protocols for Fast Long-Distance Networks, Argonne,
Illinois USA, February 2004. [Online]. Available: http:
//www.hamilton.ie/net/htcp3.pdf

[7] D. J. Leith, R. N. Shorten, “On RTT Scaling in H-TCP,”
Hamilton Institute, Tech. Rep., September 2005. [Online].
Available: http://www.hamilton.ie/net/rtt.pdf

[8] I. Rhee, L. Xu and S. Ha, “CUBIC for Fast Long-
Distance Networks,” North Carolina State University, Tech.
Rep., August 2007. [Online]. Available: http://tools.ietf.org/id/
draft-rhee-tcpm-cubic-00.txt

[9] “Bic and cubic,” Accessed 7 Aug 2008. [Online]. Available:
http://netsrv.csc.ncsu.edu/twiki/bin/view/Main/BIC

[10] L. Stewart, J. Healy, “Characterising the Behaviour and
Performance of SIFTR v1.1.0,” CAIA, Tech. Rep. 070824A,
August 2007. [Online]. Available: http://caia.swin.edu.au/
reports/070824A/CAIA-TR-070824A.pdf

[11] “The Web100 Project,” November 2007, Accessed 19 Nov
2007. [Online]. Available: http://web100.org/

[12] L. Rizzo, “Dummynet: a simple approach to the evaluation of
network protocols,” ACM SIGCOMM Computer Communica-
tion Review, vol. 27, no. 1, pp. 31–41, 1997.

[13] , “Iperf - The TCP/UDP Bandwidth Measurement Tool,”
May 2005, Accessed 19 Nov 2007. [Online]. Available:
http://dast.nlanr.net/Projects/Iperf/

[14] L. Stewart, J. Healy, “Light-Weight Modular TCP Congestion
Control for FreeBSD 7,” CAIA, Tech. Rep. 071218A,
December 2007. [Online]. Available: http://caia.swin.edu.au/
reports/070717B/CAIA-TR-070717B.pdf

[15] J. Healy, L. Stewart, “H-TCP Congestion Control Algorithm
for FreeBSD,” December 2007. [Online]. Available: http:
//caia.swin.edu.au/urp/newtcp/tools/htcp-readme-0.9.txt

[16] “Spirent smartbits - trusted industry standard for router and
switch testing,” Accessed 11 Aug 2008. [Online]. Avail-
able: http://www.spirent.com/analysis/technology.cfm?media=
7&ws=325&ss=110&stype=15&a=1

[17] A. Heyde, L. Stewart, “Using the Endace DAG 3.7GF Card
With FreeBSD 7.0,” CAIA, Tech. Rep. 080507A, May 2008.
[Online]. Available: http://caia.swin.edu.au/reports/080507A/
CAIA-TR-080507A.pdf

[18] L. Stewart, J. Healy, “Tuning and Testing the FreeBSD
6 TCP Stack,” CAIA, Tech. Rep. 070717B, July 2007.
[Online]. Available: http://caia.swin.edu.au/reports/070717B/
CAIA-TR-070717B.pdf

[19] R. Braden, “Requirements for Internet Hosts - Communication
Layers,” RFC 1122 (Standard), Oct. 1989, updated by RFC
1349. [Online]. Available: http://www.ietf.org/rfc/rfc1122.txt

[20] M. Allman, “TCP Congestion Control with Appropriate Byte
Counting (ABC),” RFC 3465 (Experimental), Feb. 2003.
[Online]. Available: http://www.ietf.org/rfc/rfc3465.txt

[21] Matt Mathis, Jeff Semke, Jamshid Mahdavi, Kevin
Lahey, “The Rate-Halving Algorithm for TCP Congestion
Control,” Internet Engineering Task Force, Tech. Rep.,
June 1999. [Online]. Available: http://www.tools.ietf.org/html/
draft-mathis-tcp-ratehalving-00.txt

[22] M. Allman and E. Blanton, “Notes on burst mitigation for trans-
port protocols,” SIGCOMM Comput. Commun. Rev., vol. 35,
no. 2, pp. 53–60, 2005.

CAIA Technical Report 080818A August 2008 page 10 of 10

http://caia.swin.edu.au/urp/newtcp
http://www.ietf.org/rfc/rfc2581.txt
http://www.ietf.org/rfc/rfc2581.txt
http://www.ietf.org/rfc/rfc3782.txt
http://www.ietf.org/rfc/rfc4614.txt
http://www.hamilton.ie/net/htcp3.pdf
http://www.hamilton.ie/net/htcp3.pdf
http://www.hamilton.ie/net/rtt.pdf
http://tools.ietf.org/id/draft-rhee-tcpm-cubic-00.txt
http://tools.ietf.org/id/draft-rhee-tcpm-cubic-00.txt
http://netsrv.csc.ncsu.edu/twiki/bin/view/Main/BIC
http://caia.swin.edu.au/reports/070824A/CAIA-TR-070824A.pdf
http://caia.swin.edu.au/reports/070824A/CAIA-TR-070824A.pdf
http://web100.org/
http://dast.nlanr.net/Projects/Iperf/
http://caia.swin.edu.au/reports/070717B/CAIA-TR-070717B.pdf
http://caia.swin.edu.au/reports/070717B/CAIA-TR-070717B.pdf
http://caia.swin.edu.au/urp/newtcp/tools/htcp-readme-0.9.txt
http://caia.swin.edu.au/urp/newtcp/tools/htcp-readme-0.9.txt
http://www.spirent.com/analysis/technology.cfm?media=7&ws=325&ss=110&stype=15&a=1
http://www.spirent.com/analysis/technology.cfm?media=7&ws=325&ss=110&stype=15&a=1
http://caia.swin.edu.au/reports/080507A/CAIA-TR-080507A.pdf
http://caia.swin.edu.au/reports/080507A/CAIA-TR-080507A.pdf
http://caia.swin.edu.au/reports/070717B/CAIA-TR-070717B.pdf
http://caia.swin.edu.au/reports/070717B/CAIA-TR-070717B.pdf
http://www.ietf.org/rfc/rfc1122.txt
http://www.ietf.org/rfc/rfc3465.txt
http://www.tools.ietf.org/html/draft-mathis-tcp-ratehalving-00.txt
http://www.tools.ietf.org/html/draft-mathis-tcp-ratehalving-00.txt

	Introduction
	Congestion Control Algorithms
	NewReno
	H-TCP
	CUBIC

	Experimental Tools
	Siftr and Web100
	Dummynet
	Iperf
	FreeBSD Modular Congestion Control and H-TCP Module

	Experimental Setup
	The Testbed
	TCP Tuning
	H-TCP Tuning

	Experimental Method
	Automated Test Scripts
	Gathering Latency Data
	Recording the Congestion Window

	Algorithm Behaviour Analysis
	Congestion Epoch Duration
	Fast Recovery
	CUBIC's fast convergence mode

	Latency Analysis
	HTCP Irregularities

	Conclusion and Further Work
	References

