Quagga-Accelerator: An Implementation for
Accelerated Processing of Historical BGP Events
using Quagga 0.99.13 - version 0.1

Mattia Rossi
Centre for Advanced Internet Architectures, Technical Report 090730C
Swinburne University of Technology
Melbourne, Australia
mrossi@swin.edu.au

Abstract—This technical report describes the Quagga
Accelerator (QA), an implementation of a technique for
artificially accelerating ’real time’ to evaluate historical
real-world BGP traffic. The QA is based on the MRT
Dump File Manipulation Toolkit (MDFMT) and Quagga
version 0.99.13. It replays a live BGP update stream
previously recorded in MRT format into Quagga faster
than real-time, by accelerating Quagga’s internal clock, yet
generating outputs which still reflect actual BGP operation.
We explain the implementation in detail and show per-
formance results considering the impact of our technique
when multiple instances of Quagga run on a single host,
and give an outlook of possible implementations of the
QA when Quagga instances are distributed across multiple
hosts.

I. INTRODUCTION

The idea of a Quagga Accelerator (QA) has been
first discussed in [1] (called “accelerated emulator”). The
QA is a system consisting of an Update Regenerator
(URQA), based on the Update Regenerator of the MRT
Dump File Manipulation Toolkit (MDFMT) [2], and a
modified Quagga implementation. This system gives re-
searchers the ability to test additions to the BGP protocol
implemented in Quagga faster and easier by allowing
them to use two important features: replay identical BGP
streams into Quagga and accelerate the evaluation of
such BGP streams. The possibility of replaying the same
stream of BGP updates into Quagga, allows researchers
to detect misbehaviour of an implementation easier, as
the input is known and the output can be predicted.
Anyhow, many implementations need to be verified over
a long period of BGP updates and a high amount of
possibilities. The possibility to accelerate the processing
of BGP updates, yet keeping the output consistent to
real-time BGP behaviour, allows researchers to overcome
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this hurdle. The QA reaches this two goals by using
the URQA to regenerate BGP updates from an MRT
dump file, and replaying them into a modified Quagga.
The Quagga internal clock is accelerated by the URQA,
which provides Quagga with time information read from
the MRT dump file. BGP updates are sent to Quagga
over a standard TCP connection, but synchronised with
this “fake” time information. The output generated by
Quagga is also synchronised with the faketime, therefore
producing log files which reflect a real-time BGP behav-
ior. The faketime is passed from the URQA to Quagga
via shared memory using the mmap system library,
which is available in C (programming language used for
Quagga) and Python (programming language used for
the URQA). The QA uses additional shared memory to
keep data processing consistent to real-time behaviour.
The following sections will explain the implementation
in detail: Section II gives an overview of the two parts
of the QA, in Section III we explain how the URQA
differs from the UR of the MDFMT and in Section IV we
explain the adaptations made to Quagga. We show some
performance results in V, discuss problems encountered
with the QA in VI and give an outlook of future work,
like deploying a QA with multiple Quagga instances
distributed on multiple hosts in Section VII. We conclude
in Section VIII. Version 0.1 of the QA, as well as the
MDFMT are available at [3]. Quagga 0.99.13 can be
obtained at [4]. If you are not familiar with the MDFMT
or the implementation of Quagga, we suggest the reading
of [2] and [5].

II. THE QUAGGA ACCELERATOR IMPLEMENTATION

The Quagga Accelerator (QA) consists of two main
parts:
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router bgp <AS number>

bgp router-id <router IP>

neighbor <remote-ip> remote-as <AS number>
neighbor <remote-ip> update-source <router IP>

neighbor <remote-ip> filter-list 20 in

neighbor <URQA IP address 1> update-source <router IP>
neighbor <URQA IP address 1> filter-list 20 out

neighbor <URQA IP address 2> update-source <router IP>
neighbor <URQA IP address 2> filter-list 20 out

ip as-path access-list 20 deny .*

neighbor <URQA IP address 1> remote-as <URQA AS number 1>

neighbor <URQA IP address 2> remote-as <URQA AS number 2>

The AS number of the Quagga BGP speaker - not important
for the URQA

The IP address of the Quagga BGP, to be passed to the URQA
as destination IP address

The AS number of the remote peer

The IP address of the Quagga BGP. This is necessary if
multiple IP addresses are configured on a single interface

Does not accept updates from the remote peer. This makes
sense, as is acts only as intermediate for the URQA

The AS number of the first URQA peer
The IP address of the Quagga BGP. Same as above

Does not send updates to the URQA peer. The UR doesn’t
accept them. This is important in order not to disrupt func-
tionality

The AS number of the second URQA peer
The IP address of the Quagga BGP. Same as above
Does not send updates to the URQA peer. Same as above

Applies the filter-list 20 to all addresses

TABLE I
AN EXAMPLE CONFIGURATION FOR A QUAGGA BGP RUNNING ON THE SAME MACHINE AS THE URQA AND USING THE LOOP-BACK
INTERFACE FOR COMMUNICATION. THE URQA IN THIS CASE REGENERATES TWO BGP SESSIONS.

o An Update Regenerator (URQA) which parses the
input file and transmits the information to Quagga
together with the timing information.

o Multiple modified Quagga instances, which pro-
cesses the feed and perform all the logging using
the timing information received by the URQA.

Based on this idea, it is necessary to refine some details:
The Update Regenerator (URQA) described in this tech-
nical report is a modification of the Update Regenerator
described in [2], experiencing the same restrictions and
constraints. This applies also to the instances of Quagga
that can peer with the URQA. The URQA can only
peer to a single Quagga BGP speaker, but this Quagga
instance can then peer to as many instances needed.

As shared memory is used for transmitting the time
information between the URQA and Quagga, the addi-
tional constraint is, that all Quagga instances need to
run on the same machine. In [2], the original UR sends
updates depending on the real time of the system, while
in this system the timing and thus the send rate are
controlled based on load feedback by the Quagga in-
stances participating in the system, communicated via a
separate shared memory block (further called syncmem).
The higher the load on the system, the slower the virtual
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Fig. 1. Communication via shared memory between the URQA and
multiple Quagga instances

time advances. An overview of the system is shown in
Figure 1.

While the time information and the feedback are ex-
changed via shared memory, the BGP messages are still
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bgpd -f <configfile> -1 <ip address> -1 <pidfile>

-t <faketimefile> -s <syncfile>

-f The configuration file to use

-1 The IP address to listen on. Automatically disables in-
stalling routes into the kernel

-1 The pid file to use. This is necessary, if you want to run
multiple Quagga instances on the same machine. One file
per Quagga instance is required. The files must be writable
by the user that runs Quagga (usually user quagga)

-t The hook file for mmapping the shared memory to pass
the virtual (fake) time information. Needs to be the same
for all Quaggas. Is /tmp/faketime by default, which is also
hard coded in the URQA. Can be omitted See section III-A
-8 The hook file for mmapping the shared memory to pass
the synchronisation information (load feedback). One file
per Quagga instance required. See section III-A

TABLE 1T
AN EXAMPLE COMMAND LINE FOR A SIMULATOR-ENABLED
QUAGGA BGP SPEAKER.

exchanged via real TCP connections. This implies, that
both, the URQA and Quagga can bind to IP addresses
and reach each other via TCP. This is best achieved
setting up all necessary IP addresses on a loop-back
interface. The configuration of the Quagga peers is the
same as described for the UR in [2] (see Table I) but the
Quagga BGP instances need additional options passed to
the command line, as shown in Table II. This additional
options are introduced in Quagga with the patches that
allow the URQA to control the speed of the internal
clock. The URQA and the changes to the Quagga source
code are explained in detail in the following sections.

III. URQA: THE UPDATE REGENERATOR FOR THE

QA

The URQA is basically the Update Regenerator from
the MDFMT with added functions to control the internal
clock of Quagga and to process MRT dump file entries
in log time. The first changes regard the command line
options. As the QA only works if Quagga and the URQA
run on the same machine (compared to the UR which can
connect also to remote BGP speakers), the Quagga bgpd
is started from the URQA. The commands needed to run
the BGP daemon as described in table II can be placed
in a text file, separated by newlines. This file needs be
passed as argument to the URQA via the new -g option
flag.

After getting all necessary input (MRT input file,
destination IP, AS-IP mapping file, Quagga commands
file), the URQA starts to process the MRT file. First it
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extracts the timestamp (expressed in seconds since the
UNIX Epoch as defined in the POSIX standard [6]) from
the first MRT header and sets it as the simulator start
time. In order to start the Quagga bgpd instances, it is
necessary to subtract some time from that timestamp,
spawn the bgp daemons, give them enough time to
connect to each other, make the URQA connect to one
Quagga instance, and finally arrive to the start time again,
which is the point at which updates are sent.

The detailed steps are:

o After extracting the timestamp, 90 seconds are sub-
tracted which are the time within all BGP peering
sessions in the system are established.

e The timestamp is written to the faketime hook-
file as 4 byte word (system-wide representation of
time). This ensures that a file of 4 bytes exists,
in order to be able for the URQA and Quagga
to map 4 bytes of shared memory. The shared
memory is mapped from the file immediately after.
See section III-A for the details.

e In the next step the Quagga command file is pro-
cessed, and the Quagga BGP daemons are started.
Each time a Quagga instances is started, the fake
time is increased by 1, making Quagga believe
one second has already passed by. In fact, to give
Quagga the time to create TCP and BGP connec-
tions, the URQA sleeps for one real time second,
equalling fake and real time. Each Quagga instance
is linked to a syncmem, a second shared memory
block, which uses the file passed to quagga via the
-s option as hook. This hook file allows unrelated
processes to share information about the address of
the shared memory block (see section III-A). This
shared memory (one for each Quagga instance) is
used to communicate the “busyness” of Quagga to
the URQA, and to allow it to adapt the speed for
advancing the fake clock. The list of shared memory
blocks is stored in an array called synclist.

o If the synclist is empty, the URQA quits, as no
Quagga instances have been started.

e 5 seconds after starting the last Quagga instance,
the URQA tries to connect to a Quagga instance,
opening a TCP connection and sending an OPEN
message like the original UR of the MDFMT. Each
time one of the fake peers is connected, the fake
time is advanced by one second. The URQA sleeps
one real time second and then sends a KEEPALIVE,
advancing the fake time again of one second, and
sleeping one more real time second. This trick has
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resulted in a successful connect on every run of the
simulator.

o If the start time is still bigger than the current fake
time, the fake time is advanced one real time second
at a time, using the combination of increasing the
fake time and sleeping.

Once the URQA and all Quaggas are connected to
each other, the updates can be sent. The updates are
read from the MRT dump file, causing a high amount of
I/0 operations, which limits the speed of the simulator
mostly at the beginning of each simulation. Additionally,
each Quagga instance needs to process the incoming
Updates, and depending on the amount of updates ar-
rived, that might take some time. Without using the
syncmem for signalling when Quagga is under load, this
could result in the fake time being advanced faster than
Quagga processes updates which then would result in an
inconsistent update behaviour. This load feedback allows
the URQA to advance the fake clock slower in such a
case, ensuring that there will not be any clock jumps
while Quagga is processing updates. The syncmem is
checked every time the fake clock is advanced. The
faketime is increased without updates being sent until
it reaches the same value of the timestamp of an update
waiting to be sent, in which case, all updates with that
timestamp are sent.

The detailed steps are:

e The updates which are recorded in the MRT file
with the same timestamp as the faketime provides,
are sent as quick as possible, without advancing the
fake clock. Once the timestamp extracted from the
MRT header of such an update is larger than the
current faketime, the faketime is increased, leaving
the updates to be sent only after the faketime
reaches the value of the recorded timestamp again.

e The faketime is increased only when every con-
nected Quagga instance has signalled that it is not
under load anymore. This is achieved by Quagga
writing a 0 into it’s syncmem. If the waiting time
equals one second of real time, the faketime is
advanced, and the reading of the remaining shared
memory blocks of the synclist is skipped. This
ensures that Quagga will not run slower than real
time, avoiding unrealistic BGP behavior.

o As the timestamps in the MRT header of updates do
not necessarily need to be sequential (there may be
“gaps” of a few seconds), the faketime is increased
second by second until the MRT timestamp value
is reached. This prevents a clock jumping, which
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might have unpredictable results in the operation in
Quagga.

o If the keepalive timer expires during this process, a
KEEPALIVE is sent.

e Once the faketime reaches the same value as the
timestamp recorded in the MRT file, all updates
with this timestamp are sent.

After all updates are sent, the URQA allows 30
real time seconds for cleanup, before closing the TCP
connections and attempting to stop the Quagga BGP dae-
mons. The URQA quits with a simple speedup statistic.

A. Python memory mapping

Mmap allows quick inter-process communication via
shared memory, between processes which are not related.
In the case of the URQA, mmap is used to write the
time recorded in UPDATE messages in the MRT file
into a shared memory area, which then is read from this
memory block in Quagga on every call of a function
which is originally supposed to return the wall clock
time. Mmap uses a file on the file system as hook for
the shared memory. In the case of the faketime, the
URQA creates this file in the /fmp folder of the root
file system with the name faketime. This filename is
currently hard coded in the URQA, and is the default in
Quagga. After creating the file with write permissions
— the URQA only writes into the shared memory,
while Quagga only reads from it, making complicated
semaphores unnecessary — the mmap shared memory is
created using the mmap function of the standard Python
library with the same name. It is required to pass mmap
the size of the memory which must be smaller or equal
than the file size, and the access rights. Python’s mmap
module. The function allows various flags to define its
memory access rights on UNIX platforms. The URQA
uses ACCESS_COPY which gives the memory write or
read access as specified on the underlying file. It also
disables synchronisation of the memory with the file,
disabling unnecessary I/O operations which would slow
down inter-process communication; the reason for choos-
ing mmap over pipes or named pipes. The timestamp is
extracted as an integer number from the MRT header and
is then written as a 4 byte word (host byte order) into
the shared memory to ensure a constant size, and thus
save processing time in the read and overwrite processes.
This overwrite process is the continuous process in the
script of writing into the mapped memory. Multiple
Quagga instances need to access this memory at random
time, always starting to read from the same starting
address. To allow this behaviour without segmentation
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faults, the mapped memory is overwritten each time
the URQA updates the fake time. Python offers the
seek function in combination with the os library flag
SEEK_SET, to rewind the start address for writing into
the same memory block each time. The os library is also
a standard Python library.

Testing of the URQA with one instance of Quagga
revealed that Quagga sometimes can’t keep up with the
speed the script processes advertisements, and processes
updates in a wrong relative time frame, specially if there
are a lot of advertisements within one second. This is
most likely to happen at the start of a BGP communi-
cation, where the whole routing table is advertised. To
avoid the problem a second mmapped shared memory is
used (syncmem), which uses the file passed to Quagga
at the command line through the -s option as hook. The
URQA parses the command line and extracts the file
name, creates the file, maps it to a shared memory and
puts the pointer to the shared memory into a list, the
synclist. Each Quagga instance has it’s own syncmem,
and writes either a 1 or a 0 into it, to signal whether it’s
ready to process data or not — with O meaning that there
is no data to process. The URQA continuously reads
from the syncmem, processing the synclist in a single
loop. Once the syncmem of the last Quagga also signalled
that it’s ready, the URQA proceeds in increasing the
faketime, and sending the relative updates. The syncmem
shared memory is accessed with the ACCESS_COPY flag
like the faketime memory, to allow fast communication.

Additionally to this adjustment process, the URQA
keeps track of the real time, and continues to increase
the simulated time each real time second, skipping the
remaining entries of the synclist, in case it is blocked
on a certain syncmem waiting for a ready signal from
the relative Quagga bgpd. This ensures more realistic
operation, as it can also happen in real BGP operation,
that a thread in Quagga runs for more than a single
second if under high load.

IV. CHANGES IN THE QUAGGA SOURCE CODE

The URQA is only one part of the QA as already
explained. It is also necessary to have a patched Quagga
to be able to create a whole system. Similar to the
patch created in [5], the changes are made in files of
the lib and bgpd folders. The first file that needs to
be looked at is bgp_main.c in the bgpd folder. In this
file the mmap shared memory is created and destroyed.
The second file, thread.c, is located in the [ib folder,
and contains the clock functions and thread scheduler
of Quagga. The third file, also in the /ib folder is log.c
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which contains the logging facilities. This last file needs
to be adapted because of an unclear decision of the
Quagga developers, to use the system wide gettimeofday
function to retrieve wall clock time instead of calling
the Quagga function. Changes have to be applied also
to the bgp_dump.c file in the bgpd folder. This file is
responsible for the timestamp in BGP MRT dumps, and
gets its time information through the simple time system
call, which bypasses the Quagga wide quagga_gettime
function call that contains the simulated time. In order
to have the timestamps in simulated time (necessary for
the proper evaluation of BGP traffic), the time system
call has to be replaced with the quagga simulated time
call.

A. Memory mapping in C and the simulated clock in
Quagga

Beginning with the changes made in the bgp_main.c
file, it is also necessary to explain the C mmap function.
Similar to the Python function, the memory area is
mapped through a file. As this file needs to exist already
in order to be able to read from it, the URQA creates
the file and the shared memory for the URQA first, and
executes the Quagga instances afterwards, which have
access to the file of the correct size and properties.
The mmap call in C is slightly simpler than in Python.
The access information is retrieved from the file prop-
erties, so the call needs only the file as argument. The
mmap function is called in bgp_main.c, but defined in
lib/thread.c, storing the memory map itself is in a global
variable within that thread file. The thread file contains a
variety of functions to keep track of the time, and provide
all Quagga processes with time information through
the quagga_gettime function. These original functions
rely on the gettimeofday system call to retrieve time
information, which is replaced with a call to a function
that reads the simulated time from the memory map.

The time returned by the memory map read process
does not provide microsecond information although.
Therefore it is necessary to rely on the microseconds
provided by the gettimeofday call. Quagga also includes
a lot of time adjustment mechanisms to ensure Quagga’s
functionality even if the system clock should suddenly
provide wrong information and to avoid clock jumps.
This results in Quagga providing two global variables
which contain two different but related timestamps. The
recent_time variable contains the actual wall clock time,
while the relative_time contains the time since the start
of Quagga. The relative time is computed from the
recent or wall clock time, and is kept up to date by
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keeping track of the microseconds passed by, in order to
avoid the described wrong time information upon system
clock changes. This is important as all timer threads
in Quagga are based on the information provided by
relative_time. The updating of the relative time using
microseconds is a problem for the simulator on the other
hand. This would let the time increase even if the URQA
does not increase it. The behaviour has been changed
to ignore the microseconds overflow, resulting in the
possibility of having multiple microsecond overflows
within a simulated second of time. As the timer threads
do not rely on microseconds anyways, this solution does
not affect the functionality of the simulator.

Quagga uses a variety of threads to process BGP
updates. These threads are all placed into a main thread
scheduler queue and executed in the bgp_main.c infinite
loop, at the end of the main function. Thread types range
from event threads (to process signals, BGP notifications
and error events), read/write threads, timer threads (e.g.
for KEEPALIVE messages and MRAI timers), to back-
ground threads including work queue threads (update
the RIB, RIB consistency checks and other operations).
On arrival of a high amount of UPDATE messages, the
threads can become quite busy, and it might take some
time for them to finish. It is necessary that during this
busy operation, the simulated time does not increase, as
it could result in threads taking several simulated seconds
to finish, which is inconsistent to an original operation.
In order to overcome this problem, Quagga uses the
syncmem, the shared memory block mapped from the file
passed through the -s option to the program, to signal
the URQA that it is busy. The URQA stops increasing
the simulated time, until every Quagga of the simulator
signals that it is not busy anymore. Quagga checks the
thread scheduler queue, in order to find out whether it
is busy or not. This is done by looking for read, write
or work queue threads, which are the threads which put
a high load on the system.

The function relative to that operation is the function
thread_fetch, which empties, but also fills the main
thread queue. The thread queue is emptied, as long as
there are threads in the queue, and is filled, if it is empty.
The queueing process depends on the type of thread
that is available. Each thread type has it’s own queue,
event threads are in the event queue, timer threads in the
timer queue, read threads in the read thread queue and
so forth. Events are the first processed threads. The event
queue is emptied and the event threads are placed into
the main thread queue. The main thread queue is then
processed without taking into consideration the remain-
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Fig. 2. Read thread, write thread and background thread queues are
emptied and the content put into the main thread scheduler queue.
The background thread queue contains also the work queue thread

(wq).

ing threads. In case no event thread is scheduled, the
remaining thread queues are emptied and the respective
threads are placed in the main thread queue. Threads are
processed in the following order: timer threads first, then
read/write threads then background threads. The process
is illustrated in Figure 2. Here the amounts of read and
write threads that are passed from the respective queues
to the main thread scheduler queue are noted in simple
variables. The values of the variables are decreased each
time such a thread is processed from the main thread
queue.

To signal that it is busy, Quagga writes a 1 into the
syncmem as soon as a read, write, or work queue thread
are processed from the main thread queue. It has been
detected that there is always only one relevant work
queue thread that is executed for a whole read-write
cycle of BGP updates, while there can be many read
and write threads. To detect whether Quagga is not busy
anymore, it is necessary that the current processed thread
is not a work queue thread, and that the values of the
variables keeping track of the remaining read or write
threads to process, are below a certain threshold (5 for
read threads, O for write threads). If everything matches,
Quagga writes a 0 into the syncmem and the URQA will
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either look for a ready signal at the next memory block
shared with an other Quagga instance, or increase the
faketime if this was the last Quagga instance to wait
for. Selecting to use a different shared memory for each
Quagga instance, avoids the necessity for system wide
semaphores. The threshold of 5 for the read threads has
been chosen to avoid Quagga processing the latest read
thread which would eventually listen until new messages
arrive, and Quagga would not be able to signal that it
is ready. This situation would unnecessary slow down
the QA, as it would wait until a real-time second passes
by, before letting the URQA continue to increase the
faketime. This situation can still happen if a work queue
thread is processed without a read or write thread in
between. As such an event is rather uncommon, the
simulator slows done only slightly in overall time. The
effects will be discussed in the following section.

V. EXPERIMENTAL TEST RESULTS

The QA needs to run multiple Quagga instances on a
single system, therefore the resource usage is quite high.
The QA has been tested on a dual core CPU with 2.4
GHz each core, 4 GB of RAM, and 140 GB of hard
disk space. While the amount of memory available on
the host is enough to accommodate many BGP instances
using a full Internet-size BGP routing table, the CPU
is only capable of handling a limited amount of BGP
instances, even if they are equally spread over multiple
cores. The amount of CPU time needed depends on the
amount of peering connections that are created between
the BGP instances. It also depends on the amount of
BGP peering sessions recreated by the URQA and the
amount of BGP update messages that travel along the
system. The QA has been used reflecting a variety of
routing topologies, with BGP speakers peering in many
ways. The URQA has been used to regenerate up to 5
peering sessions (see Figure 3) and the input data has
been collected by a Quagga BGP speaker connected to
APNIC [7], and contains an Internet-size routing table
with approximately 300K entries. This is translated into
300K updates at the beginning of each BGP session,
causing each Quagga to generate really high CPU load
at the beginning of a simulation. Additionally resource
usage depends on the type of logging setup in Quagga.
Dumping BGP updates in MRT binary format uses less
CPU and disk space than logging updates in text format.
The following subsections show the speedups gained
with a test setup and possible failure modes of the
simulator, related to CPU resource shortage.
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Fig. 3. The URQA has been used to regenerate up to 5 BGP peering
sessions

A. Example Speedup and Resource Usage

Figure 4 shows the speedup of the QA over a simple
BGP topology where the URQA regenerates 2 BGP
peering sessions, and where up to 8 Quagga BGP
speakers are connected with a single peering session to
a single neighbor (see Figure 5). BGP messages are only
propagated downstream and are logged at each Quagga
instance, once in binary MRT format and once in text
log format.

The speedup decreases quite rapidly and linear the
more Quagga instances are running. The maximum
speedup reached is of 18, using a single Quagga instance
and MRT dumps. Running 2 Quagga instances it is still
almost 17 times faster than real-time. The worst speedup
reached is of 7.8 running 8 Quaggas and text logging.
It can be seen, that using text log files slows down the
QA compared to using MRT dumps, but between the
two types of logging, the difference is more remarkable
in the size of the generated log files. An input MRT
file of 50 MiB generates an MRT file of the same size
at the first Quagga instance — Quagga just re-dumps all
the received updates, in practice generating the input file
again — and about 12 MiB at the second instance. A text
log file generated at the first Quagga instance with full
debugging on instead can reach a size of approximately
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Fig. 4. Speedup achieved with up to 8 Quagga instances running. If
used with MRT dump files, the speedup is higher than if used with
text logging. The speedup decreases linearly with each additional
Quagga instance.
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Fig. 5. A simple topology used to observe the speedup of the QA

2 GiB and 1 GiB at the second Quagga instance. With 8
Quagga instances the total disk usage using text logging
reaches around 10 GiB for the text logs compared to
approximately 150 MiB using MRT dumps.

VI. KNOWN ISSUES

The QA has been proved to work reliably with a
small number of Quagga instances running on the same
machine. A larger number of Quaggas, or for instance a
larger number of inter-Quagga peering sessions, has been
observed to put an excessive load on the CPU, causing
certain Quaggas to drop a BGP peering session, and thus
the whole simulator to fail. This happens mostly, because
the Finite State Machine of a Quagga BGP instance can
not advance to a certain state, as the thread responsible
for the action could simply not be scheduled as needed
due to CPU resource shortage, while in a neighbouring
Quagga instance everything proceeds properly. In that
case the Quagga with the FSM in a right state might
send a message to the Quagga with the FSM in an im-
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proper state causing the BGP connection to be dropped.
Another possibility is also that Quaggas internal resource
management is detecting a resource shortage and simply
stops the execution of Quagga printing a resource usage
report in the logfile. This failure modes can be observed
also with a number of Quagga instances running on the
same host at real-time. At the time of writing the Quagga
thread system is being reworked, which might result in
different behavior of the simulator with future versions
of Quagga. The URQA is known to use quite a high
amount of resources, specially if regenerating a high
amount of peering sessions. Depending on the amount of
peering sessions regenerated by the URQA, the amount
of updates contained in the input file, the size of the
routing table to be handled and the topology simulated,
resource availability for the simulator may vary, and so
will the number of Quagga instances possible to run
without failure.

VII. FUTURE WORK

The QA is experimental work for a specific project.
It uses a lot of resources, and can be optimised in
many ways. The URQA is Python based and quite
slow, switching to the C based libbgpdump [8] library
could improve speed and resource usage, but makes
the creation of the OPEN message more complex, as
libbgpdump is not designed for creating MRT dumps,
but for reading them. The simulator currently only works
with IPv4; IPv6 needs to be enabled in the Python
libraries used by the URQA. The URQA could also be
extended in order to be able to peer with multiple Quagga
instances and eventually use multiple MRT files as input.
Efforts to create a distributed simulator which can make
use of multiple hosts on a LAN have been made, with
partially very good results. The preliminary results of
this ideas are discussed in the following subsection and
should be intended as suggestions for future work.

A. Simulation on Distributed Systems

It has been tested to share the fake time within the QA
via file, without mapping it into a shared memory, and
sharing the file through a NFS file system [1]. While
the system basically proved to work, the speedup has
been quite low, and the BGP communication logged was
inconsistent with the original data, due to caching used
by the network file system, refraining the internal clock
of remote Quaggas to be advanced in time. The later
shortcoming has been tried to avoid by using plain TCP
communication between the main URQA and remote
“UR-servers” on different machines which synchronise
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Fig. 6.  Distributing the simulation of a topology over multiple
hosts. Each host (squares) runs an instance of a URQA, which uses
the piped MRT dump generated by a Quagga collector as input. As
the red circle shows, it depends on the main topology, whether it’s
possible to distribute the simulation over multiple hosts.

the fake time and the load feedback of the local Quagga
instances, avoiding the use of files and NFS. As for the
NFS system, the Quagga instances were peering via real
network to each other, exchanging BGP messages at log
time. Again, the communication of the fake time worked
well, and compared to the NFS system it was processed
in time on the remote Quaggas, but the load feedback
from Quagga to a “UR-server” and from there via
network to the main URQA has proved very unstable and
inconsistent making the whole QA system inconsistent.
This idea could be improved with additional research
and testing. An other idea was to run independent QA’s
on several machines, with each QA processing a part of
the main BGP topology. Each distributed QA deploys
one Quagga instance as collector and pipes the MRT
dump of the collector to the URQA of a remote QA,
which then regenerates the BGP session for the QA on
the remote machine as shown in Figure 6. This setup
does not need any additional changes to the URQA or
Quagga, but can be achieved quite easily with common
Unix programs and commands and some configuration
and preparation’.

Even though the mechanism to distribute the QA
is quite simple, there are some constraints on how a

'Tt has been successfully tested on a FreeBSD 8 betal system
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mkfifo -m 0777

<inputfile>

ssh <host> 'tail -f -¢c +0
<dumpfile> | tee -a' >
<inputfile>

< start URQA >

create a fifo to be read by the
URQA with permissions 0777
Pipes the copy of a MRT
dumpfile through an ssh pipe
into the previously created fifo

Start the QA system on the
remote machine. The URQA
will start processing updates as
soon as data comes through the
pipe. Depending on the con-
figuration of ssh, it might be
necessary to authenticate after
issuing the ssh command and
starting the URQA.

TABLE III
ON A REMOTE HOST, THE URQA READS FROM A FIFO, NOT A
FILE. THE OUTPUT OF A QUAGGA BGP SPEAKER IS DUPLICATED
AND REDIRECTED THROUGH AN SSH PIPE INTO THIS FIFO. THE
URQA HANDLES THE INPUT LIKE USUAL.

topology has to be split. As the URQA currently is not
able to use multiple MRT files as input, and it’s not
possible to run two instances of an URQA to feed the
same Quagga (see AS6 in Figure 6), it is necessary to
plan the split carefully, depending on the available hosts.
Some topologies like a full mesh for example, are not
possible to distribute at all. Graph theory has to be used
to determine the possibility of splitting a topology into
sub-topologies as needed. The simple commands to pass
an MRT dump over the network to be used as input for
the URQA is shown in Table III. These commands have
to be executed on the remote host.

Using SSH the output of a Quagga MRT dump is
continuously printed to stdout using the tail -f command,
duplicated by the tee command®> and piped over the
network into a previously created named pipe (fifo). This
fifo can be opened by the URQA like a file, and the
MRT entries processed as usual. The content of the fifo
is constantly updated as soon as the collecting Quagga
dumps some MRT information, which makes the remote
URQA not only adapt the speedup to the Quagga load
feedback, but also to the speed messages arrive through
the “MRT dump pipe”. The remote system needs to be
started and stopped manually on each remote machine,
as the input MRT dump (the fifo) only closes after
tearing down the ssh session (stopping the tail and tee
command), allowing the URQA to finish its job. As this
is very early work, no speedup measurements for the
distributed system simulators have been made yet. The

It seems that Quagga stops running if the MRT dump is piped
without duplicating

page 9 of 10



ideas of distributing the simulation over multiple hosts
can be refined and expanded in many ways. Using the
technique last presented for example, it might be possible
to create a BGP simulator which could be distributed
over a Grid. Again that depends on the topology and
whether tasks of evaluating a part of the topology could
be executed in parallel or not, and the speedup achieved
could be questionable.

VIII. CONCLUSION

We presented a working implementation of the
Quagga Accelerator which replays a historical data
stream accelerated over a system of modified Quagga
instances, still generating output correctly scaled in time.
We have shown in detail, how the time information is
extracted from MRT dump files by the Update Regen-
erator of the Quagga Accelerator (URQA) and passed
through shared mameory to a modified Quagga instances.
We have also shown, how Quagga has been modified
to think, the fake time information is the real time,
to make it run faster, and how the load of Quagga
is measured to keep the operation of the QA consis-
tent. The performance analysis has shown that we can
speedup the processing of Quagga updates using this
implementation by 18 times. We also discuss that the
QA uses a high amount of CPU which could infer the
operation. To overcome this shortcoming, we also tested
possible implementations of a distributed QA which
deploys multiple Quaggas on multiple machines, which
resulted in a partial success. Based on this facts we are
able to confirm the benefits the QA can provide to BGP
research and new Quagga implementations: it makes use
of real historical BGP data, allowing to repeat tests with
the same input keeping output coherent, and the system
can process data faster than real-time, showing that it’s
speedup mainly depends on the size of BGP topologies
simulated. The QA is mostly useful to replicate small
topologies, which need to evaluate a high amount of BGP
data. The working implementation is available in version
0.1 for download at [3].
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