
Further Optimising Online FPS Game Server
Discovery

Christopher Leong1

Centre for Advanced Internet Architectures. Technical Report 090911A
Swinburne University of Technology

Melbourne, Australia
ckcleong@gmail.com

Abstract- This paper proposes several improvements to a
proposed game server discovery algorithm based on clustering
servers by origin Autonomous System (AS). Following a brief
overview of current game server discovery processes, the
algorithms on which this paper is based are outlined. Using
Valve's Counterstrike:Source game and datasets employed in the
previous algorithm's paper, several improvements to the sub-
clustering and calibration algorithms are explored. This includes
sub-clustering based on a dynamic choice of network prefix and
alternative definitions for a function to choose the number of
calibration probes. The suggested enhancements allow a
significant reduction in the number of calibration probes required
while maintaining reasonable reordering of servers.
Subsequently, appreciable reductions in the time and network
traffic required over the existing proposed algorithms are
observed.1

Keywords- Server discovery, search optimisation, latency
estimation

I. INTRODUCTION

Many first person shooter (FPS) games facilitate
multiplayer competition over data networks. These games
typically employ a client-server topology and each server hosts
anywhere from 4 to around 30+ players at any one time[1]. As
these servers may be operated by anyone from large internet
service providers (ISPs) to individual enthusiasts, there are
many servers players may potentially join. The aim of game
clients is to present an up-to-date list of active game servers so
that a player can select a suitable server on which to play.

The act of creating this list of up-to-date active game
servers is known as server discovery. Game clients typically
query a central database (known as a master server) where a
list of currently available game servers is maintained. Using
this list, they then proceed to sequentially query each game
server to generate a local list of information regarding each
server. This may include the number of players currently
playing on the server, the game/map type and the round trip
time (RTT, commonly referred to as 'lag'). Based on this
locally generated list, a player proceeds to select a suitable
server on which to play.

With the fast paced and reaction based action that typically
characterises FPS style games, latency plays an important role
in ensuring fair and competitive gameplay. It has been shown

1 This author is currently an engineering student at The
University of Melbourne. This report was written during
the author's winter internship at CAIA in 2009.

that competitive online FPS requires latencies below
200ms[1]. Here the main issue with server discovery arises:
players wishing to join low latency servers must wait for the
server discovery process to complete to ensure that all
potentially suitable game servers are listed in their game client.
Coupled with the large number of servers available, this
process proves time consuming, resource wasting and
inefficient; players query thousands of servers while
generating megabytes of network traffic to effectively join a
single server.

This paper explores potential improvements to a previously
proposed optimised server discovery algorithm based on
clustering servers by origin Autonomous System (AS)[2].
While highly effective in reducing the time and amount of
traffic generated in the server discovery process, potential
areas of improvement were suggested by the author. These
include a reduction in the number of required calibration
queries/probes and alternative sub-clustering algorithms. Both
of these areas have the potential to further improve the
accuracy in reordering servers with fewer required initial
samples and hence reduce the overall time required for the
server discovery process. The same dataset employed in [2]
and Counterstrike:Source are again used as an illustrative
example of an online FPS game.

The rest of the paper is organised as follows. A brief
overview of the server discovery process using
Counterstrike:Source (CS:S), current solutions to improving
the server discovery process and the proposed optimised
server discovery process based on clustering by AS are
outlined in section 2. This is followed by an exploration of the
issues raised by the author of this algorithm in section 3.
Section 4 provides a demonstrative illustration of the
combined effects of the optimisations provided in this paper.
Areas identified with potential for further research and
improvement are outlined in section 5. The paper concludes in
section 6.

II. SERVER DISCOVERY

This section provides a brief overview of current game
server discovery methods using Counterstrike:Source as an
illustrative example. It then outlines some of the currently
implemented solutions aimed at reducing the resources used
during server discovery and their downfalls. Finally, a
summary of the proposed optimised server discovery process
based on clustering by AS is given.

CAIA Technical Report 090911A September 2009 page 1 of 7

A. Counterstrike:Source
Game server discovery typically occurs in two phases:
1. A game client queries a master server for a list of the

addresses of currently available game servers
2. The game client then queries each of the addresses

identified in the previous step sequentially to
determine information such as the number of players
currently participating in the game and the game/map
type. An estimate of the latency between the client
and server is also usually inferred through this query
and response.

The protocols used when querying the master server and
the subsequent game servers for CS:S are well documented on
the Valve developer website[3]. In the case of CS:S, the two
phases involve:

1. Multiple queries to the master server to generate a list
of addresses of currently available game servers.
Each request contains information regarding the
broad geographical region in which you wish to find
servers, an identifier for the next packet required
from the master server and a filter which tells the
master server to return only servers running a
particular game, map, etc.

2. Game clients then proceed to query each of the
servers previously identified sequentially using the
A2S_INFO[4] query type. A2S_INFO query
responses from the game servers detail information
such as the number of players currently participating
in the game and the game/map type.

B. Issues with current server discovery methods
To illustrate the issues regarding current game server

discovery mechanisms, real-world server discovery data is
used. The dataset used throughout this paper was gathered
using qstat[5] to probe all available CS:S servers using clients
at various Planetlab nodes[6]; it is identical to the dataset
employed in [2]. To remain consistent with [2], a nominal rate
of 140 probes per second is again employed.

Figure 1 and Figure 2 illustrate the second, most time
consuming phase of the server discovery process for two
particular game clients in different regions. These are Japan
and the United Kingdom respectively. The Japanese client was
chosen as an example of a client that is distant to many low

RTT servers while the client from the UK was chosen as an
example of a client that is close to many low RTT servers.

It is clear from the probe distributions that, regardless of
the game client's distance to many low latency servers, the
discovered game server RTTs fluctuate across the entire server
discovery period. Thus a player must wait for all game servers
to be probed before they can conclude that all 'playable'
servers have been located.

C. Existing solutions
There are currently two methods employed by game clients

to assist players with finding suitable game servers. These
include server-side and client-side filtering.

Basic server-side filtering is provided when querying the
master server. The query packet allows the specification of the
broad geographical region and desired game/map type of
servers. This information is used by the master server to
reduce the number of returned game server addresses. Hence,
the number of subsequent game servers to be queried is
reduced. This lessens the time spent and unnecessary network
traffic generated searching for a suitable game server.

Client-side filtering allows game clients to specify certain
attributes which may be used to sort or remove servers from
the game browser's current view. However, while this may aid
a player in searching for a suitable game server on which to
play, it does not affect the total time and network traffic
required to gather information about relevant servers; it merely
improves the game browser's presentation of current
information to the player.

D. Proposed solution
With the aim of presenting lower RTT servers before

higher RTT servers, automatic early search termination given a
desired threshold and being able to function with minimal
player configuration, a method involving clustering by AS was
devised[2]. To overcome the chicken-and-egg problem of
wishing to probe by increasing RTT but needing to probe a
game server for its RTT to be able to sort it by RTT, the
algorithm works in three key steps:

1. Clustering. The game servers returned by the master
server are grouped by its origin AS. The rationale
behind this is that different autonomous systems
identify topologically distinct regions of the Internet.
Hence, they should share a similar RTT from the
client.

CAIA Technical Report 090911A September 2009 page 2 of 7

Figure 1 CS:S game server RTTs vs time as seen from Japan Figure 2 CS:S game server RTTs vs time as seen from the UK

2. Calibration. A subset from each AS is probed and the
results used to infer a reasonable estimate of the RTT
for the AS as a whole. The calibration probes are also
used to determine whether hosts within an AS display
clustering and should be further broken up for re-
ordering.

3. Optimised probing. This involves querying the
remaining servers in order of sorted cluster using the
information gathered during calibration. Servers
within clusters are probed in the order originally
returned by the master server.

The above process is summarised in Algorithm 1.
To implement automatic early search termination in the

server discovery process, another algorithm was proposed by
the same author[2]. Since the previous algorithm does not
guarantee that successive probes will have ascending RTT
(however, successive probes should trend upwards), a method
that employs a sorted window of current probes is used to
determine a suitable stop time. This method is described in
Algorithm 2.

Figure 3 and Figure 4 illustrate the effects that these
algorithms have on the server discovery process. The two
distinct phases of calibration and reordered probing are shown
in blue and red respectively. A 200ms threshold for 'playable'
servers is shown as a horizontal dashed line. The autostop
algorithm's RTTbottom is shown as the black line, while the
autostop termination time is shown as the dashed vertical line.

To illustrate the effectiveness of re-ordering, probes beyond
the autostop termination time are also plotted. A sorted list of
'probes to be re-ordered' is also superimposed on the re-
ordered probes in green. This represents the ideal case in
which all remaining game servers' RTTs are known a priori
and provides a visual benchmark. These colour and plot
conventions will be used throughout the rest of this paper.

It can be seen that the most tangible improvements are
achieved by clients which are distant to many low RTT
servers. The reordering algorithm effectively allows the game
client to query lower latency servers first while the autostop
algorithm appropriately terminates the discovery process when
no more 'playable' servers are expected to be found. In the case
of this particular Japanese game client, only 32% of the total
server discovery time was needed.

Clients which are closer to many low RTT servers see a
fairly neutral impact in server discovery time and traffic
generated. Since the majority of servers are already below the
'playable' threshold, the autostop algorithm stops the discovery
process late in the process. However, since the game servers
are still reasonably re-ordered, lower autostop thresholds may
be employed to greater effect.

III.ISSUES AND POTENTIAL IMPROVEMENTS

As seen in the previous section, the currently proposed
optimised server discovery algorithm is highly effective at
reducing the time and amount of traffic generated during the
server discovery process. However, the author suggested
several areas that could possibly be improved. These include
alternative methods for determining the number of required
calibration queries/probes and alternative sub-clustering
algorithms. Both of these areas have the potential to further
improve the accuracy in reordering servers with fewer required
initial samples and hence reduce the overall time required for
the server discovery process. These issues will be explored in
the following subsections.

A. An alternative sub-clustering algorithm
The current algorithm for sub-clustering involves

clustering autonomous systems into /16 networks if the 20th
and 80th percentile measurements for the cluster differ by
more than 40ms. The impact of dividing the network using
different prefix lengths is explored through the following
proposed change to the prefix choice in the current algorithm.

The proposed change involves identifying the number of
subnets an autonomous system can be broken up into using
different prefix lengths. As the prefix length is increased, the
autonomous system is broken up into more, smaller subnets.

CAIA Technical Report 090911A September 2009 page 3 of 7

Algorithm 1: Calibration and probing of clusters

1. Retrieve all game servers and AS numbers

2. Cluster servers by AS number

3. For each AS cluster,

a) Nsample = Ncluster
1/2 where Ncluster is the number of

servers in the same cluster

b) Probe Nsample randomly selected servers from
the cluster, one from each /16 subnet present
within the cluster

c) RTTcluster = median RTT of the Nsample sampled
servers in the cluster

d) If the 20th and 80th percentile measurements of
all the sampled servers differ by more than
40ms:

i. Split the members of the cluster into new
clusters

ii. Each new cluster consists of members of
the old cluster who belong to the same /16
subnet

iii. Probe one previously un-probed server
from each new cluster. The probed RTT
becomes RTTcluster for the new cluster

4. Rank all clusters in order of ascending RTTcluster

5. Probe all remaining servers in order of their
cluster's rank. Within a given cluster, probe servers
in the order they were originally returned by the
master server

Algorithm 2: Automatic termination of optimised probing

• RTTstop = maximum RTT considered playable (e.g.,
RTTstop = 200ms)

• Wautostop = sampling window size (e.g., Wautostop =
100)

• Wait for Wautostop servers to be probed

• Terminate probing when RTTbottom > RTTstop, where
RTTbottom is the RTT below which 2% of the last
Wautostop RTT samples have fallen

Then, based on the choice of Nsample, the choice of prefix length
is chosen such that the autonomous system is broken up into
Nsample or less subnets.

The rationale behind this method is that given a desired
number of samples, sampling based on a fixed prefix length
may lead to some subnets being probed multiple times while
other subnets may not get probed at all. Choosing a prefix
based on the desired number of samples ensures that given the
number of desired samples, probes from as many possible
distinct clusters in the address space are sampled. This process
is described in Algorithm 3.

Figure 5 illustrates the effect that this algorithm has on the
server discovery process for the client in Japan. Contrasting to
Figure 3, it can be seen that a marginal reduction in the time
required is achieved with negligible loss in the number of
'playable' servers found before termination. More importantly,
the reordering of servers is more consistent. This is especially
evident towards the beginning of the optimised probing step;
groups of servers which should have been probed later in the
process are relocated correctly.

Figure 6 and Figure 4 contrast the effect that this algorithm
has on the client in the UK. The effect on re-ordering is more
subtle than in the case of Japan. It can be seen that small
clusters of servers around 200 seconds into the optimised
discovery process are re-ordered appropriately with this
alternative algorithm.

Although the direct benefits of this alternative sub-
clustering algorithm may appear marginal, in the next section
it is shown that this technique, combined with an alternative
choice in the number of calibration probes, yields appreciable
gains.

B. Alternative choices in the number of calibration probes
The number of samples to be taken from each AS cluster

for calibration is currently based on the square root of the

number of game servers found within an AS. This seemingly
arbitrary choice of the number of samples is investigated
through the exploration of different functions used to define
Nsample. Also, an alternative method in choosing Nsample is
proposed and investigated.

To determine the sensitivity of the number of probes to the
accurate reordering of clusters, different choices of Nsample were
investigated. This was first achieved through scaling the
number of autonomous systems used in the calculation of
Nsample while retaining the original square root function.

A summary of the results from the client in Japan can be
found in Table 1. It can be seen that even with as few as 50%
of the original number of sampled probes, the optimised server
discovery algorithm is able to remain highly accurate. In all
instances over 99% of the total number of 'playable' servers
were discovered before termination. Similar results were
observed for the client in the UK: reducing Ncluster by a factor
of 8 saw a 50% fall in required calibration probes while still
discovering nearly 98% of the total number of 'playable'
servers.

An alternative method for choosing Nsample was also
investigated. It is based on prioritising the sampling of larger
autonomous systems. The rationale behind this decision is that
servers within smaller AS clusters are more likely to be closer
together (and hence share similar RTTs from the player).
Hence, only a single probe is used to characterise smaller AS
clusters while existing methods for the choice of Nsample are
retained for processing larger clusters. The choice of 100 game
servers within an AS was found to provide a good threshold
(Space limits preclude a more detailed discussion of this
choice).

Again, a similar trend emerges for the Japanese client as
seen in Table 2. It can be seen that even without sub-clustering
smaller autonomous systems, savings in the number of

CAIA Technical Report 090911A September 2009 page 4 of 7

Figure 3 Optimised discovery, CS:S client in Japan Figure 4 Optimised discovery, CS:S client in UK

Nsample Calibration
probes

Autostop
(time and % worst case)

% all probes
<RTTstop found

(Ncluster)0.5 3185 74.5s 32.1% 100.0%

(Ncluster/2)0.5 2391 70.9s 30.5% 99.9%

(Ncluster/4)0.5 1908 68.3s 29.4% 99.7%

(Ncluster/8)0.5 1623 66.1s 28.5% 99.6%
Table 1 Scaling Ncluster, CS:S client in Japan

Nsample Calibration
probes

Autostop
(time and % worst case)

% all probes
<RTTstop found

(Ncluster)0.5 1911 68.6s 29.5% 99.7%

(Ncluster/2)0.5 1680 67.1s 28.9% 99.7%

(Ncluster/4)0.5 1524 66.1s 28.5% 99.7%

(Ncluster/8)0.5 1413 65.3s 28.1% 99.6%
Table 2 Prioritised sampling, CS:S client in Japan

(Nsample = 1 for Ncluster < 100)

calibration probes required and the overall time taken are
achieved with a minimal effect on the number of detected
'playable' servers. Similar results were observed with the UK
client.

A consequence of using fewer calibration probes that is not
immediately evident in the above tables is the effect on
reordering. Even though the percentage of servers found with
desirable latencies remained highly consistent, as the number
of calibration probes was reduced, Figure 7 illustrates the

undesired effect of poorer reordering. It can be seen that,
especially towards the end of the complete discovery process,
that some clusters of servers are sub-optimally re-ordered. In
the next section, it will be shown that a combination of the
above-mentioned techniques improves the situation.

IV.ILLUSTRATING THE COMBINED OPTIMISATIONS

To illustrate the combined optimisations suggested in this
paper, data from both the Japanese client and the UK client in
Table 3 and Table 4 respectively are used to highlight several
results of interest.

'Unmodified' represents the results from using the original
optimised server discovery algorithm (described in Algorithm
1 and 2). The results from using a combination of the
alternative sub-clustering algorithm (described in Algorithm 3)
and a reduced number of calibration probes are referred to as
'modified'. The reduced number of calibration probes is based
on prioritising the sampling of larger autonomous systems
(Nsample = (Ncluster/8)0.5 for clusters with >100 servers, Nsample = 1
otherwise). Finally, results from the extreme case of only
randomly probing each AS cluster once are reproduced for
comparison.

For the client in Japan, it can be seen that using only 43%
of the originally required calibration probes, the combined
modifications to the existing algorithm allowed for a reduction

CAIA Technical Report 090911A September 2009 page 5 of 7

Algorithm 3: Alternative algorithm for calibration and
probing of clusters

1. Retrieve all game servers and AS numbers

2. Cluster servers by AS number

3. For each AS cluster,

a) Nsample = Ncluster
1/2 where Ncluster is the number of

servers in the same cluster

b) Nactual = the number of subnets ≤ Nsample
resulting from breaking up the cluster using an
increasing prefix length

c) Pactual = prefix found in previous step

d) Probe Nactual randomly selected servers from
the cluster, one from each subnet whose prefix
is Pactual

e) RTTcluster = median RTT of the Nsample sampled
servers in the cluster

f) If the 20th and 80th percentile measurements of
all the sampled servers differ by more than
40ms:

i. Split the members of the cluster into new
clusters

ii. Each new cluster consists of members of
the old cluster who share the same subnet
prefix Pactual

4. Rank all clusters in order of ascending RTTcluster

5. Probe all remaining servers in order of their
cluster's rank. Within a given cluster, probe servers
in the order they were originally returned by the
master server

Figure 5 Alternative sub-clustering algorithm, CS:S client in Japan

Figure 6 Alternative sub-clustering algorithm, CS:S client in UK

Figure 7 Reordering issues arise with using fewer calibration probes, CS:S
client in Japan

of 13% in the required time to complete the discovery process.
This was achieved with a negligible loss in 'playable' game
servers found before termination. Comparing to the extreme
case, it can be seen that considerable results with only 15%
more probes than absolutely required can be achieved.

While a similar reduction in the number of calibration
probes was seen for the client in the UK, a time reduction of
only 0.7% was observed. This was due to the majority of
servers being under the 'playable' RTT threshold. However, it
can be seen that the modified algorithm still managed to find
all 'playable' servers using fewer calibration probes.

Figure 3 and Figure 8 contrast the original and modified
algorithm's performance for the client from Japan while Figure
4 and Figure 9 contrast the original and modified algorithm's
performance for the client from the UK. In both cases it can be
seen that despite the large reduction in the number of
calibration probes used in the modified algorithm, reasonable
accuracy in reordering is still achieved.

V.ISSUES AND FUTURE WORK

While the datasets employed in this paper demonstrated
promising results, greater real-world testing on different
connections from different regions should be investigated.
This is to ensure that the underlying assumptions made were
not unique to the particular game client data used.

A theoretical lower limit of probing only one server per AS
to reorder clusters was mentioned when illustrating the
improvements achieved through modifying the originally
proposed algorithm. Exploring the possibility of using the AS
number of the hop prior to a server's AS to cluster autonomous
systems may prove a possible avenue to lower this limit.

Several other possible areas to explore include using
different conditions and thresholds for sub-dividing clusters.

VI. CONCLUSION
With the large number of game servers available for

players to join, the simple 'brute force' methods for server
discovery are proving increasingly detrimental to the player
experience. Having outlined several issues pertaining to
current methods, a previously proposed process involving
clustering by origin Autonomous System was investigated.
While effective at reducing both the time and network
resources required for the discovery process, several potential
areas of improvement were explored.

This paper has shown that using alternative choices in sub-
clustering and the number of calibration probes employed in
the previously proposed optimised game server discovery
process can appreciably improve the efficiency of the
algorithm. Sub-clustering based on a dynamic choice of
network prefix improved the re-ordering of clusters, displaying
greater intelligence in the choice of calibration probes. Using a
reduced number of calibration probes and concentrating
calibration resources on larger, more potentially diverse AS
clusters proved viable but demonstrated a reduction in
reordering accuracy. However, the modifications proved to
complement each other's weaknesses to synergistically yield
appreciable reductions in the amount of time and network
traffic generated.

ACKNOWLEDGEMENTS

I would like to thank Jason But and Philip Branch for their
guidance and assistance over the course of this project,
Grenville Armitage for providing the opportunity to undertake
this internship and CAIA for their warm hospitality throughout
my visit.

CAIA Technical Report 090911A September 2009 page 6 of 7

Figure 8 Plot of 'modified' algorithm, CS:S client in Japan

Algorithm Calibration
probes

Autostop
(time and % worst case)

% all probes
<RTTstop found

Unmodified 3185 74.5s 32.1% 100%

Modified 1362 65.1s 28.1% 99.6%

1 probe per
AS

1176 55.8s 24.0% 84.8%

Table 3 Illustration of combined optimisations, CS:S client in Japan

Figure 9 Plot of 'modified' algorithm, CS:S client in UK

Algorithm Calibration
probes

Autostop
(time and % worst case)

% all probes
<RTTstop found

Unmodified 3136 227.7s 97.9% 100%

Modified 1366 226.2s 97.3% 100%

1 probe per
AS

1176 226.2s 97.3% 100%

Table 4 Illustration of combined optimisations, CS:S client in UK

REFERENCES

[1] G. Armitage, M. Claypool, and P. Branch, Networking and Online
Games - Understanding and Engineering Multiplayer Internet Games.
United Kingdom: John Wiley & Sons, Ltd., June 2006.

[2] G. Armitage, Optimising Online FPS Game Server Discovery through
Clustering Servers by Origin Autonomous System. ACM NOSSDAV
2008, May 2008.

[3] Master Server Query Protocol,
http://developer.valvesoftware.com/wiki/Master_Server_Query_Protoco
l, as of July 2009

[4] Server Queries,
http://developer.valvesoftware.com/wiki/Server_Queries, as of July
2009

[5] QStat, http://www.qstat.org/, accessed July 2009
[6] PlanetLab, PlanetLab - An open platform for developing, deploying, and

accessing planetary-scale services, https://www.planet-lab.org/, accessed
July 2009

CAIA Technical Report 090911A September 2009 page 7 of 7

	I. Introduction
	II. Server Discovery
	This section provides a brief overview of current game server discovery methods using Counterstrike:Source as an illustrative example. It then outlines some of the currently implemented solutions aimed at reducing the resources used during server discovery and their downfalls. Finally, a summary of the proposed optimised server discovery process based on clustering by AS is given.
	A. Counterstrike:Source
	B. Issues with current server discovery methods
	C. Existing solutions
	D. Proposed solution

	III. Issues and potential improvements
	A. An alternative sub-clustering algorithm
	B. Alternative choices in the number of calibration probes

	IV. Illustrating the combined optimisations
	V. Issues and future work
	VI. Conclusion
	Acknowledgements
	References

