
Timing enhancements to the FreeBSD kernel to
support delay and rate based TCP mechanisms

David Hayes
Centre for Advanced Internet Architectures, Technical Report 100219A

Swinburne University of Technology
Melbourne, Australia
dahayes@swin.edu.au

Abstract—The enhanced Round Trip Time module
(h ertt) is used by delay and rate based TCP congestion
control algorithms in the Modular Congestion Control
Framework for FreeBSD. Three key protocol issues need to
be addressed when making robust accurate RTT estimates
in the FreeBSD TCP stack: delayed acknowledgements,
TCP Segmentation Offload, and Selective Acknowledge-
ments. The h ertt module algorithm addresses these pro-
viding an accurate robust measure of RTT.

I. INTRODUCTION

Delay and rate based congestion control algorithms
required robust accurate measurements of packet Round
Trip Time (RTT). The h ertt module provides these
measurements for use by algorithms implemented within
the Modular Congestion Control Framework[1] for
FreeBSD. H ertt is implemented as a Khelp (Kernel
helper) module using the Khelp Module Framework for
FreeBSD and is available, along with other NEWTCP
tools, at [2].

The report proceeds by outlining three key protocol
issues along with increased robustness for time stamp
based measurements. Following this the enhanced timing
algorithm is described. The report finishes with conclu-
sions and future work.

II. MEASURING RTT

Delay (and Rate) based congestion control indicators
require a more accurate measurement of the RTT than
the TCP stack’s SRTT provides.

Key issues that need to be addressed for accurate
timing are: the effect of delayed acknowledgements, TCP
segmentation offload, selective acknowledgements, and
time stamp robustness.

A. Delayed Acknowledgements

An accurate RTT measurement is made difficult when
the receiver waits for a second packet so that it can use a

single packet to acknowledge both the incoming packets.
If the second packet does not arrive within a certain time
after the first packet, a time-out occurs, following which
an acknowledgement is sent for the first packet. This
issue was highlighted in [3].

Solutions:

• The measurement algorithm guesses whether de-
layed acknowledgements have been employed by
the receiver. It does this by looking for acknowl-
edgements that acknowledge more than one packet.

• If delayed acknowledgements are detected, then the
RTT is measured between the second sent packet
and its acknowledgement. If time stamping was
used, this is ignored since the receiver reflects the
time stamp of the first packet.

• If delayed acknowledgements are detected, then the
RTT is not measured when only one packet is ac-
knowledged. This is necessary, since the measured
RTT will include the delayed acknowledgement
timeout.

B. TCP Segmentation Offload (TSO)

Timing is difficult when TSO is employed since the
one template (time stamps included) is used for the entire
transmission. To ensure at least one accurate measure-
ment at least once per RTT, or if a TSO send is longer —
once in between TSO sends, TSO is temporarily turned
off for the sending of a single packet. This provides good
timing information for the single packet and the first
TSO sent packet, allowing for a receiver using duplicate
acknowledgements.

C. Selective Acknowledgements

Selective acknowledgements, when enabled, are useful
for ensuring accurate RTT measurements. The largest
SACK acknowledgement is matched with its corre-

CAIA Technical Report 100219A February 2010 page 1 of 4

mailto:dahayes@swin.edu.au


sponding transmitted packet to make the measurement.
Previous packets and SACK holes are skipped.

D. Robustness

The record of each transmitted block contains a copy
of the send and receive time stamp if the time stamp
option is enabled, otherwise it contains the current value
of the kernel tick. A packet’s reflected time stamp is
used to help identify packet↔acknowledgement pairs (if
sane and true), but not used in the RTT calculation. This
prevents possible manipulation by a TCP receiver in an
attempt to receive an unfair advantage.

III. ENHANCED RTT MEASUREMENT FOR FREEBSD
— H ERTT

This section describes the data collection and RTT
measurements performed by h ertt.

A record is kept of each block of data sent until it is
acknowledged. A block is equivalent to a packet, except
when TSO is being used. Each record (named txsi for
transmitted segment information) contains the segment’s
sequence number, send time (tx_ts), and the last
receiver time stamp1 (rx_ts). The records are placed
at the end of a FreeBSD TAILQ (named txsegi_q).
When acknowledgements are received they are matched
with their corresponding transmissions in the TAILQ.
If the ACK is valid, and can be timed accurately, the
RTT is calculated. Refer to Algorithm 1 for the details
about the RTT calculation, and Algorithm 2 for how the
TCP sender guesses whether or not the receiver is using
delayed acknowledgements.

A. Per RTT Measurement Calculations

The burstiness of the window flow control mechanism
can significantly increase the variance of per packet RTT
measurements. This can be especially problematic when
a high speed sender is connected directly to a low speed
bottleneck link, such as home computer connected to an
ADSL modem. Measuring once per RTT eliminates this
self induced noise, but at the expense of not seeing the
full range of RTT measurements. The original Vegas[4]
idea used the measurement of a marked packet once per
RTT. The h ertt module provides this measurement in
addition to the per packet RTT measurements.

1if time stamps are being used

B. Data available from h ertt module

The h ertt module makes available the
information shown in Data element 1. The
ERTT NEW MEASUREMENT flag is used to
indicate when a new marked packet (once per RTT)
measurement is available for use by a congestion
control algorithm. To initiate a new marked packet
measurement, a congestion control algorithm clears the
ERTT NEW MEASUREMENT flag.

IV. CONCLUSIONS AND FUTURE WORK

The h ertt module provides a robust estimate of the
per packet and marked packet round trip times, suitable
for use by modular delay and rate based TCP congestion
control algorithms in FreeBSD. It is envisaged that some
delay and rate based algorithms may require specialised
processing of some of the measurements provided by the
h ertt module. Hooks for Khelp modules may be added
to support this.

ACKNOWLEDGEMENTS

The development of rate based congestion control for
FreeBSD is part of the NEWTCP project and was made
possible in part by a grant from the Cisco University Re-
search Program Fund at Community Foundation Silicon
Valley.

REFERENCES

[1] J. H. L. Stewart, “Light-weight modular TCP
congestion control for FreeBSD 7,” CAIA,
Tech. Rep. 071218A, Dec. 2007. [Online].
Available: http://caia.swin.edu.au/reports/070717B/
CAIA-TR-070717B.pdf

[2] “NewTCP project tools,” Feb. 2010, accessed 19
February 2010. [Online]. Available: http://caia.swin.
edu.au/urp/newtcp/tools.html

[3] G. D. McCullagh, “Exploring delay-based TCP con-
gestion control,” Master’s thesis, The National Uni-
versity of Ireland, Feb. 2008.

[4] L. S. Brakmo and L. L. Peterson, “TCP Vegas: end
to end congestion avoidance on a global internet,”
IEEE J. Sel. Areas Commun., vol. 13, no. 8, pp.
1465–1480, Oct. 1995.

CAIA Technical Report 100219A February 2010 page 2 of 4

http://caia.swin.edu.au/reports/070717B/CAIA-TR-070717B.pdf
http://caia.swin.edu.au/reports/070717B/CAIA-TR-070717B.pdf
http://caia.swin.edu.au/urp/newtcp/tools.html
http://caia.swin.edu.au/urp/newtcp/tools.html


Algorithm 1 Basic algorithm for calculating RTT
if ACK acknowledges something new

txsi = first entry in txsegi_q

while txsegi_q is not empty

if ACK acknowledges more than txsi
remove txsi
get next txsi from txsegi_q
continue

endif

if reflected timestamp is more recent than txsi
remove txsi
get next txsi from txsegi_q
continue

endif

if ACK acknowledges less than txsi
break

endif

if receiver is not using delayed acknowledgements
OR if ACK acknowledges more than one segment
OR is SACK
calculate new rtt -- ticks - txsi->tx_ts + 1

endif

remove txsi

endwhile

endif

Algorithm 2 Delayed ACK guessing
if acknowledging unacknowledged segments, and not sack
if acking more than maxseg

dlyack_rx += 1
else if acking more than txsi recorded length

dlyack_rx += 1
else if acking exactly txsi recorded length OR exactly maxseg

dlyack_rx -= (dlyack_rx > 0) ? 1 : 0
endif

endif

When dlyack_rx > 0, we guess that the receiver is using delayed acknowledgements.
Note dlyack_rx ∈ [0,DLYACK_SMOOTH]

CAIA Technical Report 100219A February 2010 page 3 of 4



Data element 1 Available in h ertt.h
/* Structure contains the information about the

sent segment, for comparison with the corresponding ack */
struct txseginfo;

/* Structure used as the ertt data block. */
struct ertt {

/* information about transmitted segments to aid in
RTT calculation for delay/rate based CC */

TAILQ_HEAD(txseginfo_head, txseginfo) txsegi_q;
int rtt; /* per packet measured round trip time */
int maxrtt; /* maximum seen rtt */
int minrtt; /* minimum seen rtt */
int dlyack_rx; /* guess if the receiver is using

delayed acknowledgements.*/
int timestamp_errors; /* for keeping track of inconsistencies

in packet timestamps */
int markedpkt_rtt; /* rtt for a marked packet */
long bytes_tx_in_rtt; /* bytes tx so far in marked rtt */
long bytes_tx_in_marked_rtt;/* final version of above */
u_long marked_snd_cwnd; /* cwnd for marked rtt */
int flags; /* flags*/

};

/* flags */
#define ERTT_NEW_MEASUREMENT 0x01 /* new measurement */
#define ERTT_MEASUREMENT_IN_PROGRESS 0x02 /* measuring marked RTT */
#define ERTT_TSO_DISABLED 0x04 /* indicates TSO has been

temporarily disabled */

CAIA Technical Report 100219A February 2010 page 4 of 4


	Introduction
	Measuring RTT
	Delayed Acknowledgements
	TCP Segmentation Offload (TSO)
	Selective Acknowledgements
	Robustness

	Enhanced RTT measurement for FreeBSD --- h_ertt
	Per RTT Measurement Calculations
	Data available from h_ertt module

	Conclusions and Future Work

